定义
设
是一集合列,记
它们分别称为集合列
的上极限与下极限;若它们相等,则称之为集合列
的极限,记作
,此时称集合列
收敛。
理解
1.
和
都是集合。
2.记
,则
且
。
若
,则
,则
,则
。
同样的,记
,则
且
。
若
,则
,则
,则
。
3.若
,则
,即
。
4.在形式上,集合列的上下极限定义是对称的,但是在数学逻辑上,上下极限定义并不对称。
5.对于集合列的上极限里的元素,该元素属于集合列的无限个集合,也可以不属于集合列的无限个集合;对于集合列的下极限里的元素,该元素除了不属于前面有限个集合外,属于集合列的无限个集合。
6.取集合列为
则该集合列的上极限为
,下极限为
,所以不存在极限。