实变函数论——集合的运算以及上、下极限

知识点

定义

并集

A ∪ B = { x ∣ x ∈ A 或 x ∈ B } A\cup B=\left\{x|x\in A或x \in B\right\} AB={xxAxB}
并集

交集

A ∩ B = { x ∣ x ∈ A 且 x ∈ B } A\cap B=\left\{x|x\in A且x \in B\right\} AB={xxAxB}
在这里插入图片描述

差集、补集

差集: A − B = { x ∣ x ∈ A ,但 x ∉ B } A-B=\left\{x|x\in A,但x \notin B\right\} AB={xxA,但x/B}
补集: A c = { x ∣ x ∈ Ω ,但 x ∉ A } , Ω 为全集 A^{c}=\left\{x|x\in \Omega,但x \notin A\right\},\Omega为全集 Ac={xxΩ,但x/A}Ω为全集
在这里插入图片描述

对称差集

A Δ B = ( A − B ) ∪ ( B − A ) A\Delta B=(A-B)\cup (B-A) AΔB=(AB)(BA)
在这里插入图片描述

上、下极限

l i m ‾ ⁡ n → + ∞ A n = lim sup ⁡ n → + ∞ A n = ∩ n = 1 ∞ ∪ k = n ∞ A k = { x ∣ ∃ 无穷个 k ,使 x ∈ A k } = { x ∣ 对 ∀ n ∈ N , ∃ k ≥ n , 使 x ∈ A k } \begin{aligned} \varlimsup_{n\rightarrow+\infty}A_n & = \limsup_{n\rightarrow +\infty}A_n \\ & = \cap _{n=1}^{\infty}\cup_{k=n}^{\infty}A_k \\ & =\left\{x|\exists无穷个k,使x \in A_k \right\} \\ & = \left\{x|对\forall n\in N ,\exist k \geq n,使x \in A_k\right\} \end{aligned} n+limAn=n+limsupAn=n=1k=nAk={x∣∃无穷个k,使xAk}={xnN,kn,使xAk}
l i m ‾ ⁡ n → + ∞ A n = lim inf ⁡ n → + ∞ A n = ∪ n = 1 ∞ ∩ k = n ∞ A k = { x ∣ 只有有限个 k ,使 x ∉ A k } = { x ∣ ∃ n 0 ∈ N , 当 k ≥ n 0 时, x ∈ A k } \begin{aligned} \varliminf_{n\rightarrow+\infty}A_n & = \liminf_{n\rightarrow +\infty}A_n \\ & = \cup _{n=1}^{\infty}\cap_{k=n}^{\infty}A_k \\ & =\left\{x|只有有限个k,使x \notin A_k \right\} \\ & = \left\{x|\exist n_0\in N ,当k\geq n_0时,x \in A_k\right\} \end{aligned} n+limAn=n+liminfAn=n=1k=nAk={x只有有限个k,使x/Ak}={x∣∃n0N,kn0时,xAk}
∩ n = 1 ∞ A n ⊂ l i m ‾ ⁡ n → + ∞ A n ⊂ l i m ‾ ⁡ n → + ∞ A n ⊂ ∪ n = 1 ∞ A n \cap_{n=1}^{\infty}A_n\subset \varliminf_{n\rightarrow+\infty}A_n \subset \varlimsup_{n\rightarrow+\infty}A_n \subset \cup_{n=1}^{\infty}A_n n=1Anlimn+Anlimn+Ann=1An

当集列 A k A_k Ak极限,或者是收敛的,那么 lim ⁡ n → + ∞ A n = l i m ‾ ⁡ n → + ∞ A n = l i m ‾ ⁡ n → + ∞ A n \lim_{n\rightarrow +\infty}A_n=\varliminf_{n\rightarrow+\infty}A_n =\varlimsup_{n\rightarrow+\infty}A_n n+limAn=n+limAn=n+limAn
性质
( l i m ‾ ⁡ n → + ∞ A n ) c = l i m ‾ ⁡ n → + ∞ A n c (\varlimsup_{n\rightarrow +\infty}A_n)^c=\varliminf_{n\rightarrow +\infty}A_n^c (n+limAn)c=n+limAnc
( l i m ‾ ⁡ n → + ∞ A n ) c = l i m ‾ ⁡ n → + ∞ A n c (\varliminf_{n\rightarrow +\infty}A_n)^c=\varlimsup_{n\rightarrow +\infty}A_n^c (n+limAn)c=n+limAnc

例题

单点集的极限

A k = { a k } A_k=\left\{a_k\right\} Ak={ak},当 i ≠ j i\neq j i=j时, a i ≠ a j a_i\neq a_j ai=aj l i m ‾ ⁡ k → + ∞ A k = { x ∣ ∃ n 0 ∈ N , 当 k ≥ n 0 时, x ∈ A k } = ∅ \varliminf_{k\rightarrow +\infty}A_k= \left\{x|\exist n_0\in N ,当k\geq n_0时,x \in A_k\right\}=\empty k+limAk={x∣∃n0N,kn0时,xAk}=
l i m ‾ ⁡ k → + ∞ A k = { x ∣ ∃ 无穷个 k ,使 x ∈ A k } = ∅ \varlimsup_{k\rightarrow +\infty}A_k= \left\{x|\exists无穷个k,使x \in A_k \right\}=\empty k+limAk={x∣∃无穷个k,使xAk}=
所以, lim ⁡ k → + ∞ = ∅ \lim_{k\rightarrow +\infty}=\empty limk+=

设E、F为集合,作集列

A n = { E n 为奇数 F n 为偶数 A_n=\left\{ \begin{array}{rcl} E & & {n为奇数}\\ F & & {n为偶数} \end{array} \right. An={EFn为奇数n为偶数
所以, l i m ‾ ⁡ n → + ∞ = ∩ n = 1 ∞ ∪ k ≥ n A k = ∩ n = 1 ∞ ( E ∪ F ) = E ∪ F \varlimsup_{n\rightarrow +\infty}=\cap_{n=1}^{\infty}\cup_{k\geq n}A_k=\cap_{n=1}^{\infty}(E \cup F)=E \cup F n+lim=n=1knAk=n=1(EF)=EF
l i m ‾ ⁡ n → + ∞ = ∪ n = 1 ∞ ∩ k ≥ n A k = ∩ n = 1 ∞ ( E ∩ F ) = E ∩ F \varliminf_{n\rightarrow +\infty}=\cup_{n=1}^{\infty}\cap_{k\geq n}A_k=\cap_{n=1}^{\infty}(E \cap F)=E \cap F n+lim=n=1knAk=n=1(EF)=EF

f k , f : R 1 → R f_k,f:R^1\rightarrow R fkf:R1R为实函数 ( k = 1 , 2 , ⋯   ) (k=1,2,\cdots) (k=1,2,),则 D = { x ∣ f k ( x ) ↛ f ( x ) } = { x ∣ ∃ 无穷个 k ∈ N ,使 ∣ f k ( x ) − f ( x ) ∣ ≥ 1 n } = ∪ n = 1 ∞ l i m ‾ ⁡ k → + ∞ { x ∣ ∣ f k ( x ) − f ( x ) ∣ ≥ 1 n } = ∪ n = 1 ∞ ∩ N = 1 ∞ ∪ k = N ∞ { x ∣ ∣ f k ( x ) − f ( x ) ∣ ≥ 1 n } \begin{aligned}D&=\left\{x|f_k(x)\nrightarrow f(x)\right\}\\&= \left\{x|\exist无穷个k\in N,使|f_k(x)-f(x)|\geq\frac{1}{n}\right\}\\ &=\cup_{n=1}^{\infty}\varlimsup_{k\to +\infty}\left\{x||f_k(x)-f(x)|\geq\frac{1}{n}\right\}\\&=\cup_{n=1}^{\infty}\cap_{N=1}^{\infty}\cup_{k=N}^{\infty}\left\{x||f_k(x)-f(x)|\geq\frac{1}{n}\right\}\end{aligned} D={xfk(x)f(x)}={x∣∃无穷个kN,使fk(x)f(x)n1}=n=1k+lim{x∣∣fk(x)f(x)n1}=n=1N=1k=N{x∣∣fk(x)f(x)n1}

#注:本篇习题皆来自于《实变函数论》徐森林编著。

  • 22
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值