写回答的时候,我正在用我的spyder跑几百行python。
去年,我还有在做matlab直播,一个本科三年级的学生来我这说想学matlab,然后,他又问我,Matlab是不是只有一种IDE,我说是的(当然不乏有人用些操作拿VS code写matlab),然后他说:那我不学了。然后紧接着又是对python吹了一通。
这里,想说的是,很多东西在人心里都是先入为主的(当然也不乏有些人matlab转py,py转matlab),没必要无故贬低另一方,除非你是用了很长一段时间。
目前,Matlab和python都在用,spyder也是钟爱的IDE。对于二者的选择,我举一个例子吧。
玩过一段时间tensorflow,还有matlab2014b的神经网络工具箱,在做二元非线性回归的时候,newff+train两行代码自动训练出来一个多层前馈,效果还很好,而tf几十行,出来的效果不到前者一半(当然可以深入调参,但是时间成本呢?)。但是,在做深度强化学习时,2014b没有办法像tensorflow一样有成体系的梯度处理函数,而神经网络工具箱又不能实时调整参数(仅限于2014b,高版本的drl之类的库还没接触过),因此,这一块,py+tf能够完胜。
希望题主能够辩证地看待问题,没有什么是绝对优势,绝对劣势,需要结合自己的应用场景,如果可以,尽量二者都学。