使用 MATLAB 和深度强化学习(Deep Reinforcement Learning, DRL)来优化微电网的调度。首先,使用深度 Q 学习(Deep Q-Learning)算法,训练一个智能体来学习最佳的微电网调度策略。考虑微电网中的太阳能光伏发电、风力发电、电池储能以及负荷需求,并以最大化微电网的利润为目标。
1. 微电网环境(Microgrid Environment): 这个类代表了微电网的环境。在初始化时,定义了微电网的各种参数,包括太阳能光伏发电容量、风力发电容量、电池储能容量、负荷需求等。在step
方法中,模拟了微电网中的一个时间步骤。接收到智能体的动作,即电池的充电或放电量,然后更新微电网的状态,包括电池的状态、负荷需求等,并计算奖励。在 reset
方法中,重置微电网环境到初始状态。
2. 深度 Q 学习代理(DRL Agent): 创建了一个深度 Q 学习代理,使用 rlDQNAgent
函数初始化。这个代理将学习在微电网环境中选择最佳的动作,以最大化累积奖励。在训练阶段,代理与环境交互,并使用 train
函数来更新其策略。
3. 训练代理(Training the Agent): 使用一个循环来训练深度 Q 学习代理。在每一轮训练中,重置微电网环境,并执行一系列动作-观察-奖励的步骤。在每个时间步骤中,代