神经网络能用来干什么_「十项全能」图神经网络能干嘛?

本文列举了图神经网络(GNN)在自然语言处理、计算机视觉、推荐系统、强化学习、交通预测、物理模拟、组合优化、分子设计、代码分析和恶意检测等十领域的应用案例,展示了GNN的广泛适用性。
摘要由CSDN通过智能技术生成

前几天在群里划水,有人在问图神经网络能应用于NLP/CV吗?

回想一下这两年GNN的发展,貌似我知道的领域全都有GNN的身影. 这让我想起了中文西那把无所不能的终极杀人武器:夺命3000.

下面就梳理一下GNN活跃的十个领域.正所谓"十项全能GNN"

注: 这里每个领域只简单罗列几篇,只是为了说明GNN得到了成功应用.

自然语言处理

19AAAI Graph convolutional networks for text classification

19EMNLP Heterogeneous Graph Attention Networks for Semi-supervised Short Text Classification

计算机视觉

20CVPR Graph-FCN for image semantic segmentation

20CVPR GraphTER: Unsupervised Learning of Graph Transformation Equivariant Representations via Auto-Encoding Node-wise Transformations

20CVPR Grid-GCN for Fast and Scalable Point Cloud Learning

推荐系统

19KDD MEIRec Metapath-guided Heterogeneous Graph Neural Network for Intent Recommendation

19SIGIR NGCF Neural Graph Collaborative Filtering

18KDD PinSage Graph Convolutional Neural Networks for Web-Scale Recommender Systems

强化学习

18ICLR NerveNet: Learning Structured Policy with Graph Neural Networks

19NIPS Learning Transferable Graph Exploration

20AAAI Multi-Agent Game Abstraction via Graph Attention Neural Network

交通/城市

19AAAI Spatiotemporal Multi‐Graph Convolution Network for Ride-hailing Demand Forecasting

19NIPS Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and Graph Attention Networks. NeurIPS 2019.

20AAAI GMAN: A Graph Multi‐Attention Network for Traffic Prediction

物理

19ICML Graph Element Networks: adaptive, structured computation and memory

18ICML Graph networks as learnable physics engines for inference and control

组合优化

19ICML Learning a SAT Solver from Single-Bit Supervision

19AAAI Learning to Solve NP-Complete Problems - A Graph Neural Network for Decision TSP

19NIPS Exact Combinatorial Optimization with Graph Convolutional Neural Networks.

分子/药物设计

20ICLR Directional Message Passing for Molecular Graphs

19ICLR Learning Multimodal Graph-to-Graph Translation for Molecular Optimization

19KDD Graph Transformation Policy Network for Chemical Reaction Prediction

程序代码分析

19ICML Open Vocabulary Learning on Source Code with a Graph-Structured Cache

19NIPS Devign: Effective Vulnerability Identification by Learning Comprehensive Program Semantics via Graph Neural Networks

恶意检测

19AAAI Graph Neural Networks with Adaptive Receptive Paths

19CIKM GAS Spam Review Detection with Graph Convolutional Networks

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值