一、套期保值(复制原理)
基本思想:构造一个股票和借款的适当组合,使得无论股价如何变动,投资组合的损益都与期权相同,那么创建该投资组合的成本就是期权的价值。求取看涨期权价值call的具体步骤如下:
H:购买股票的数量的比率(套期保值比率);
S0:股票的初始价格;
r:1年的无风险利率;
b:以无风险利率借款初始额;
u:股票的上升幅度;
d:股票的下降幅度;
1年后,价格可能50%上升为Su=uS0,也可能50%下降到Sd=dS0
1年后,如果股票上升,收益:Cu=HSu-b(1+r) ①
1年后,如果股票下降,收益:Cd=HSd-b(1+r) ②
由①②两式可以解得:
组合投资成本=看涨期权价值Call=购买股票支出-借款
二、风险中性原理
基本思想:假设投资者对待风险的态度是中性的,所有证券的预期报酬率都应当是无风险利率。风险中性的投资者不需要额外的收益补偿其承担的风险。在风险中性的世界里,将期望值用无风险利率折现,可以获得现金流量的现值。
购买股票的数量为H,卖出1份看涨期权价格为call;
从0到△t时刻,股票上升收益为fu,股票下降收益为fd
股票如果上升,投资价值为HS0u-fu
股票如果下降,投资价值为HS0d-fd
在风险中性下,则应当满足上升与下降后的价值相同。
如果股票上升,则价值为
看涨期权的价值为call,有
假定股票上升的概率为p,下降的概率为1-p,有
由以上两式消去call,最终可以解得
其中p为股票价格上升概率,△t为股票初始S0上升到S0u这段年化时间。
u:股票的上升幅度;d:股票的下降幅度;
三、多步二叉树——欧式看涨/看跌期权
下面主要讲解以风险中性原理来构建二叉树。
1.两步二叉树
2.多步二叉树
当二叉树模型扩展到n步后,其计算的方法仍然是相同的,从后往前依次计算出每个节点的期权价格,并乘以对应的风险中性概率,直到求出t=0时刻的期权价格。检验发现,当n达到比较大时,二叉树模型所确定的期权价格趋于一个平稳的值(如图所示),这也在一定程度上说明了二叉树模型的合理性和实用性。
对于n步二叉树的上升幅度u和下降幅度d的求解方法如下:
股票收益率在短期时间△t的方差是σ^2△t,其中σ是波动率。
使用统计学中的标准公式,收益的方差为E(R2)-[E(R)]2,其中R是收益,E表示期望值。在二叉树的一个步骤中,上升概率为p的收益为u-1,下降概率为1-p的收益为d-1。因此,我们需要选择u和d,以便:
将以下p值代入上式,
采用指数函数展开式
忽略二阶项以后的阶数,有
可以求得一般的参数如下:
△t为每两步之间的年化时间;
p为股票上升的概率,则下降概率为1-p;
u为股票上升的幅度,d为股票下降的幅度。
【案例分析1】两步二叉树的欧式看涨期权
Python实现:
import
四、多步二叉树——美式看涨/看跌期权
美式期权可能提前行权,要在欧式期权的基础上加一步是否提前行权的判断。定价过程变为:
①计算叶子节点的期权价值。
②向前加权平均并折现,得到前一层节点的期权价值。
③判断在该节点是否提前行权,若提前行权的话,将提前行权的期权价值更新为本节点的期权价值。
④不断重复2和3步至0时刻。
判断是否提前行权,需要先计算提前行权的收益。提前行权的收益为本节点上股票的预期价格减执行价格。如果收益大于期权价值,说明提前行权获利更多,因此会提前行权;反之则不会。
【案例分析2】两步二叉树的欧式看跌期权与美式看跌期权对比。
Python实现:
#二叉树模型对欧式看跌期权定价
Python实现:
#二叉树模型对美式看跌期权定价
【拓展】如果我们不断扩充二叉树的步数,比如4步的计算如下:
Python实现:
D
当二叉树的步数增加,则模型更为精确。例如,步数分别为20,50,100和500,相应的美式看跌期权的价格分别为3.082,3.067,3.059和3.055.在实践中,我们通常使用步长至少在30-50之间。
附录:欢迎大家关注微信公众号了解更多!谢谢
http://weixin.qq.com/r/tjrTyybENXtKrWKo92_k (二维码自动识别)