batchnormalization() python_理解Batch Normalization系列2——训练及评估(清晰解释)

c8cad2b8a4101891abd945b0ad6293aa.png

上一期介绍了Batch Normalization的前向传播,想法美好,然而这些引入的新参数,能否计算,如何计算,这些才是重点!

系列目录

理解Batch Normalization系列1——原理

理解Batch Normalization系列2——训练及评估

理解Batch Normalization系列3——为什么有效及若干讨论

理解Batch Normalization系列4——实践

本文目录

1 训练阶段

1.1 反向传播

1.2 参数的初始化及更新

2 评估阶段

2.1 来自训练集的均值和方差

2.2 评估阶段的计算

3 总结

参考文献


先放出这张图,帮助回忆BN的结构。

aa791acb308024eeaed480320d4b4d63.png

图 1. BN的结构

1 训练阶段

引入BN,增加了

四个参数。

这四个参数的引入,能否计算梯度?它们分别是如何初始化与更新?

1.1 反向传播

神经网络的训练,离不开反向传播,必须保证BN引入的两个操作(标准化、缩放平移)均可导。

缩放平移就是一个线性公式,求导很简单。而对于标准化时的统计量,看起来有点无从下手。其实是凭借图1的变量关系,可以绘制计算图,如图2所示。Frederik Kratzert 在这篇博文中有详细的计算,对每一个环节都进行了详细的描述。

738c9dafb52447e4a40b5ecc0c894195.png

图 2. 求解BN反向传播的计算图 (来源: 这篇博文)

由图2可见:

  • 每个环节都可导
  • 只要求出各个环节的导数
  • 用链式法则(串联关系就相乘,并联关系就相加)求出总梯度。

狗尾续貂,对这个反传大致做了一个流程图,如图3所示,帮助理解。

abeea8568f1524510816959337c264cf.png

图 3. BN层反传的流程图 (来源: 这篇博文)

注意,均值的梯度、方差的梯度的计算,只是为了保证梯度的反向传播链路的通畅,而不是为了更新自己(没明白下文还会解释);缩放因子

和j和平移因子
的梯度传播则和权重W一样,不影响反向传播链路的通畅,只是为了更新自己。

最后的结果就是原论文中表述:

e30ccc00c1a937f21aa6908dd5f289f8.png

图4. BN的反向传播. (来源: Batch Normalization Paper)

​ 如果是从事学术,不妨练练手。

1.2 参数的初始化及更新

讨论一下图1中的6个参数的初始化及更新问题。

  • W初始化用标准正态分布,更新用梯度下降
    与经典网络的初始化相同,初始化一个标准正态分布(即Xavier方法)。
  • b省略掉该参数
    在经典的神经网络里,b作为偏置,用于解决那些W无法通过与x相乘搞定的"损失减少要求",即对于本层所有神经元的加权和进行各自的平移。而加入BN后,
    的作用正是进行平移。b的作用被
    所完全替代了,因此省略掉b。

    了解过ResNet结构的朋友会发现该网络中的卷积,都没有偏置,为什么?下面截图是Kaiming He在github上回答原话。(踩坑无数必须体会深刻)

0847949f2b2de756a309aa17f90722ef.png

图5. BN的加入导致本层的偏置b失效

  • 初始化取决于统计量,仅更新梯度,但不更新值本身
    在训练阶段,每个mini-batch上进行前向传播时,通过对本batch上的m个样本进行统计得到;
    在反向传播时,计算出它们的梯度
    的梯度、
    的梯度,用于进行梯度传播。

    但是
    这两个值本身不必进行更新,因为在下一个mini-batch会计算自己的统计量,所以前一个mini-batch获得的
    没意义。
  • 初始化为1、0,更新用梯度下降
    根据我们在《理解Batch Normalization系列1——原理》的解读,
    作为“准方差”,初始化为一个全1向量;而
    作为"准均值”,初始化为一个全0向量,他俩的初始值对于刚刚完成标准正态化的
    来说,没起任何作用。

    至于将要变成什么值,起多大作用,那就交给后续的训练。即采用梯度下降进行更新,方式同

2 评估阶段

是在整个训练集上训练出来的,与
一样,训练结束就可获得。

然而,

是靠每一个mini-batch的统计得到,因为评估时只有一条样本,batch_size相当于是1,在只有1个向量的数据组上进行标准化后,成了一个全0向量,这可咋办?

2.1 来自训练集的均值和方差

做法是用训练集来估计总体均值

和总体标准差
  • 简单平均法
    把每个mini-batch的均值和方差都保存下来,然后训练完了求均值的均值,方差的均值即可。
  • 移动指数平均(Exponential Moving Average)
    这是对均值的近似。仅以
    举例

​ 其中decay是衰减系数。即总均值

是前一个mini-batch统计的总均值和本次mini-batch的
加权求和。至于衰减率 decay在区间
之间,decay越接近1,结果
越稳定,越受较远的大范围的样本影响;decay越接近0,结果
越波动,越受较近的小范围的样本影响。

事实上,简单平均可能更好,简单平均本质上是平均权重,但是简单平均需要保存所有BN层在所有mini-batch上的均值向量和方差向量,如果训练数据量很大,会有较可观的存储代价。移动指数平均在实际的框架中更常见(例如tensorflow),可能的好处是EMA不需要存储每一个mini-batch的值,永远只保存着三个值:总统计值、本batch的统计值,decay系数

在训练阶段同步获得了

,在评估时即可对样本进行BN操作。

2.2 评估阶段的计算

为避免分母不为0,增加一个非常小的常数

,并为了计算优化,被转换为:

这样,只要训练结束,

就已知了,1个BN层对一条测试样本的前向传播只是增加了一层线性计算而已。

3 总结

用图6做个总结。

981d06f909fc8c0c60589d5119197e89.png

图6. BN层相关参数的学习方法

鬼斧神工的构造,鬼斧神工的参数获取方法,这么多鬼斧神工,需要好好消化消化。

请见下一期《理解Batch Normalization系列3——为什么有效及若干讨论》

参考文献

[1] https://arxiv.org/pdf/1502.03167v3.pdf

[2] https://r2rt.com/implementing-batch-normalization-in-tensorflow.html

[3] Adjusting for Dropout Variance in Batch Normalization and Weight Initialization

[4] https://www.jianshu.com/p/05f3e7ddf1e1

[5] https://www.youtube.com/watch?v=gYpoJMlgyXA&feature=youtu.be&list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC&t=3078

[6] https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html

[7] https://www.quora.com/In-deep-learning-networks-could-the-trick-of-dropout-be-replaced-entirely-by-batch-normalization

[8] https://panxiaoxie.cn/2018/07/28/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0-Batch-Normalization/

[9] https://www.tensorflow.org/api_docs/python/tf/layers/batch_normalization

[10] https://www.quora.com/In-deep-learning-networks-could-the-trick-of-dropout-be-replaced-entirely-by-batch-normalization

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值