理解Batch Normalization系列1——原理(清晰解释)

Batch Normalization技巧自从2015年被谷歌提出以来,因其有效提升网络训练效率,获得广泛应用与持续研究。然而,要透彻理解BN却不容易,下图是Kainming He在《Learning Deep Representations for Visual Recognition》报告中的一页,只需要注意右下角的红色描述。
在这里插入图片描述
图 1. 右下角的红色提示足见BN的费解. (来源: Learning Deep Representations for Visual Recognition)

大咖都会在BN上踩坑,可想而知,如果萌新接触这个概念,更是不易。因此《理解Batch Normalization系列》将对Batch Normalization做一个全面总结。

系列目录

理解Batch Normalization系列1——原理

理解Batch Normalization系列2——训练及评估

理解Batch Normalization系列3——为什么有效及若干讨论

理解Batch Normalization系列4——实践

1 初始idea

如果做神经网络训练前,对输入的像素进行标准化处理,将有效降低模型的训练难度。受此启发,作者想到,既然输入层可以加标准化有好处,那么网络里的隐层为什么不可以标准化?

于是,作者通过对每层加权和进行标准化,然后再通过缩放平移来“适度还原”。这样,做到了既不过分破坏输入信息,又抑制了各batch之间各位置点像素分布的剧烈变化带来的学习难度

在原作中,最主要的思想就是下面这个公式。(别担心!只需要扫一眼即可!)

在这里插入图片描述

图 2. BN的核心思想. (来源: Batch Normalization Paper)

我们可以先绕开图2,分以下三步理解。

  • 先了解BN给神经网络结构带来了什么
  • 然后理解BN是如何进行前向传播
  • 理解BN是如何进行前向传播

2 原始神经网络的结构

一个经典的神经网络,它的某一个隐层如图3所示。

在这里插入图片描述

图 3. 经典网络的示意图

为了和原始论文统一,将之前常见的加权和符号 z ⃗ \vec{z} z 改用 x ⃗ \vec{x} x 表示。即上一层输出的激活值为$\vec{a} $ ,那么经过本层加权和 W a ⃗ + b ⃗ W\vec{a}+\vec{b} Wa +b 处理后,获得加权和$\vec{x} , 然 后 经 过 本 层 激 活 后 即 输 出 ,然后经过本层激活后即输出 \sigma(\vec{x}) $。

(符号短缺, σ ( ) \sigma() σ()代表求激活, σ 2 \sigma^2 σ2代表方差)

3 BN的神经网络结构

加入BN之后的网络结构如图4所示。

在这里插入图片描述

图 4. 加入BN网络的示意图

很抱歉,为了容纳更多的有效信息,导致这个图有点复杂。总体上来说,对于本层的加权和$\vec{x} , B N

  • 4
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值