1、《孙子算经》之"物不知数"题
今有物不知其数,三三数之剩二,五五数之剩七,七七数之剩二,问物几何?
2、中国剩余定理
定义:
设 a,b,m 都是整数. 如果 m|(a-b), 则称 a 和 b 模 m 同余, 记为
m 称为这个同余式的模.
定理(中国剩余定理):
设 m1,m2,...,mr 是两两互素的正整数. 设 a1,a2,...,ar 是整数, 则同余方程组
模 M = m1m2...mr 有唯一解
3、C语言源代码
#include
//
// 作者:落枫飘飘
// 时间:2016、04、21
// 博客:http://www.cnblogs.com/wuqianling/p/5415758.html
//
// 《孙子算经》之"物不知数"题:
// 今有物不知其数,三三数之剩二,五五数之剩七,七七数之剩二,问物几何?
//
// 根据题意我们有如下同余方程组:
// x=2%3 ---> x=3*k+2
// x=3%5
// x=2%7
//
// 分析法求解
int analytical(float m1, float m2, float m3, float a1, float a2, float a3)
{
float x=0.0, k1=0.0, k2=0.0, k3=0.0;
for(k1 = ; ; k1++)
{
x = m1*k1 + a1; // ---> x=3*k1+2
k2 = (x-a2) / m2; // ---> k2=(x-2)/3
if(k2 == (int)k2) // 判断k2是否为整数
{
k3 = (x-a3) / m3;
if(k3 == (int)k3) // 判断k3是否为整数
break;
}
}
return (int)x;
}
// 中国剩余定理求解
int chineseRemainderTheorem(int m1, int m2, int m3, int a1, int a2, int a3)
{
int i, x;
int M, M1, M2, M3;
int y1, y2, y3;
M = m1 * m2 * m3;
M1 = m2 * m3; // M1=M/m1=m2*m3
M2 = m1 * m3;
M3 = m1 * m2;
y1 = M1 % m1;
y2 = M2 % m2;
y3 = M3 % m3;
x = (a1*M1*y1 + a2*M2*y2 + a3*M3*y3) % M;
return x;
}
int main()
{
// x=2%3 即 x=a1%m1
// x=3%5 即 x=a2%m2
// x=2%7 即 x=a3%m3
int m1=, m2=, m3=;
int a1=, a2=, a3=;
printf("分析法:\nx=%d \n\n", analytical(m1,m2,m3,a1,a2,a3));
printf("中国剩余定理:\nx=%d \n\n", chineseRemainderTheorem(m1,m2,m3,a1,a2,a3));
return ;
}
中国剩余定理CRT(孙子定理)
中国剩余定理 给出以下的一元线性同余方程组: $\Large(s):\left\{\begin{aligned}x\equiv a_1\ (mod\ m_1)\\x\equiv a_2\ (mod\ ...
【GDKOI2017】 两个胖子萌萌哒 小学奥数题
题目大意:给你一个$n\times m$的网格,你要在这个网格上画三角形. 三角形的顶点只能在网格的整点上,且至少有一条边平行于$x$或$y$轴,且三角形面积为整数.问你能画多少个不同的三角形. 两个 ...
一个hin秀的小学三年级奥数题 [hin秀]
~~~~~~不知为何总会被小学的题虐哭QAQ,真的秀啊,毒害广大小朋友~~~~~~ 一个hin秀的小学三年级奥数题 [hin秀] 题目: 给出一个无限大的棋盘 n×n (n>0 , 是 ...
Contest 高数题 樹的點分治 樹形DP
高数题 HJA最近在刷高数题,他遇到了这样一道高数题.这道高数题里面有一棵N个点的树,树上每个点有点权,每条边有颜色.一条路径的权值是这条路径上所有点的点权和,一条合法的路径需要满足该路径上任意相邻的 ...
【xsy1116】数学题 奥数题
真实奥数题 题目大意:给你正整数k$,r$.问你存在多少对$(x,y)$,满足$x
python基础===一道小学奥数题的解法
今早在博客园和大家分享了一道昨晚微博中看到的小学奥数题,后来有朋友给出了答案.然后我尝试用python解答它. 原题是这样的: 数学题:好事好 + 要做好 = 要做好事,求 “好.事.做.要”的值分别 ...
qdu-凑数题(01背包)
Description 小Q手里有n(n<=1000) 个硬币,每枚硬币有一定的金额(200=>x>=1)他想知道,用这些硬币(每枚硬币只能用一次,但可能会有等面值的用两次) 能组成 ...
CPC23-4-K. 喵喵的神数 (数论 Lucas定理)
喵喵的神∙数 Time Limit: 1 Sec Memory Limit: 128 MB Description 喵喵对组合数比較感兴趣,而且对计算组合数很在行. 同一时候为了追求有后宫的素养的生活 ...
JZYZOJ1376 [coci2011]友好数对 容斥定理 状态压缩
http://172.20.6.3/Problem_Show.asp?id=1376 题意:找给出的数中含有相同数字的数对的对数. mmp数论题竟然卡快读,莫名拉低通过率什么的太过分了. 刚开始想到了 ...
随机推荐
django base.html
{% block title %}默认标题{% endblock %} - 自 ...RMAN_学习笔记4_RMAN Virtual Catalog虚拟恢复目录
2014-01-01 Created By BaoXinjian Thanks and Regards
SQLSERVER 2012之AlwaysOn -- 同步模式下的网卡性能优化
本文是基于上一篇的问题继续进行优化:具体背景请参照上文: 前后折腾了一个多 ...
android135 360 来电去电归属地显示,自定义toast,
点击会开启服务. sivAddress.setOnClickListener(new OnClickListener() { @Override public void onClick(View v) ...
mvc4+jquerymobile页面加载时无法绑定事件
问题:在view里写js,在页面第一次加载完成后,无法触发事件, 如:按钮click事件,已经在$(function(){ 添加了click });但就是无法触发,必须刷新下才可以. 原因分析: 主 ...
注册表命令 regedit32
转自 https://zhidao.baidu.com/question/1958216489744783460.html Regedt32.exe 不支持注册表项文件 (.reg) 的导入和导出. ...
MongoDB 提升性能的18原则(开发设计阶段)
MongoDB 是高性能数据,但是在使用的过程中,大家偶尔还会碰到一些性能问题.MongoDB和其它关系型数据库相比,例如 SQL Server .MySQL .Oracle 相比来说,相对较新,很多 ...
[Spring] 学习Spring Boot之二:整合MyBatis并使用@Trasactional管理事务
一.配置及准备工作 1.在 Maven 的 pom 文件中新增以下依赖: mysql