可逆矩阵的特征值和原来矩阵_基础向对矩阵特征值的一点理解

本文探讨了线性变换下特征值和特征向量的物理意义,通过矩阵A的线性变换,特征向量方向不变但可能缩放,对应的缩放倍数即为特征值。只有方阵且满秩的矩阵才有特征向量和特征值。
摘要由CSDN通过智能技术生成
矩阵是线性代数的核心,而特征值(eigenvalue)以及特征向量(eigenvector)又是一个矩阵非常重要的性质。记得本科时学习线性代数,老师在讲到特征值、特征向量这一部分时,都是着重怎样来求解。比如说,对于一个矩阵A,会有:

996991ae69e27d4032ebd06feebeab38.png

其中,x为特征向量,而lambda为特征值。那么要求一个矩阵的特征值,通常要先解一个奇怪的行列式:

beca6c35bacfdc25f045b3b17d7a1492.png

然后可以求得lambda,再利用第一个式子求解得到特征向量x。这一套下来倒是能够解出来我们所需的。但是,由于当时是死记硬背套公式来算,即使考试能过(记得当时线性代数考了100),时间长了也就都还给老师了。到应用时,更是不知所以然:这个式子是怎么来的?怎么就突然蹦出这么一个概念来?对此,国内的教参多参考前苏联的风格,更注重求解、而对其背后的原理与物理意义解释的都不太好,而死记硬背的结果就是限制了数学方法在实际中的应用。可能也是这个原因, 从去年开始,清华大学本科生的Linear Algebra课程全部改用MIT的教材,这其

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值