矩阵是线性代数的核心,而特征值(eigenvalue)以及特征向量(eigenvector)又是一个矩阵非常重要的性质。记得本科时学习线性代数,老师在讲到特征值、特征向量这一部分时,都是着重怎样来求解。比如说,对于一个矩阵A,会有:
其中,x为特征向量,而lambda为特征值。那么要求一个矩阵的特征值,通常要先解一个奇怪的行列式:
然后可以求得lambda,再利用第一个式子求解得到特征向量x。这一套下来倒是能够解出来我们所需的。但是,由于当时是死记硬背套公式来算,即使考试能过(记得当时线性代数考了100),时间长了也就都还给老师了。到应用时,更是不知所以然:这个式子是怎么来的?怎么就突然蹦出这么一个概念来?对此,国内的教参多参考前苏联的风格,更注重求解、而对其背后的原理与物理意义解释的都不太好,而死记硬背的结果就是限制了数学方法在实际中的应用。可能也是这个原因, 从去年开始,清华大学本科生的Linear Algebra课程全部改用MIT的教材,这其