2.3 可逆矩阵的特征(第2章矩阵代数)

内容概述

本节将可逆矩阵的概念和之前学到的一些概念进行了关联,说明了这些概念之间的等价性。最后以空间变换为例,讲述了逆矩阵和逆变换之间的联系。

可逆矩阵的特征

本节重点讲逆矩阵的概念和第一章中 n n n个未知量 n n n个方程的方程组以及方阵联系起来。
定理:

A A A n × n n \times n n×n矩阵,则下列命题是等价的,即对某一特定的 A A A,它们同时为真或同时为假:
a. A是可逆矩阵
b. A行等价于 n × n n \times n n×n单位矩阵
c. A有 n n n个主元位置
d. 方程 A x = 0 A\boldsymbol x = \boldsymbol 0 Ax=0仅有平凡解
e. A A A的各列线性无关
f. 线性变换 x → A x \boldsymbol x \rightarrow A\boldsymbol x xAx是一对一的、
g. 对 R n \mathbb R^n Rn中任意 b \boldsymbol b b,方程 A x = b A\boldsymbol x = \boldsymbol b Ax=b至少有一个解
h. A A A的各列生成 R n \mathbb R^n Rn
i. 线性变换 x → A x \boldsymbol x \rightarrow A\boldsymbol x xAx R n \mathbb R^n Rn映上到 R n \mathbb R^n Rn
j. 存在 n × n n \times n n×n矩阵 C C C使 C A = I CA = \boldsymbol I CA=I
k. 存在 n × n n \times n n×n矩阵 D D D使 A D = I AD = \boldsymbol I AD=I
l. A T A^T AT是可逆矩阵

上述定理的等价性可以一一彼此证明,事实上,如果能够深刻理解之前学习的内容,这些结论是显而易见的,均是同一件事情的不同说法。

例:

应用可逆矩阵定理来判断 A A A是否可逆
A = [ 1 0 − 2 3 1 − 2 − 5 − 1 9 ] A = \begin{bmatrix}1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9\end{bmatrix} A=135011229

解:

A ∼ [ 1 0 − 2 0 1 4 0 − 1 − 1 ] ∼ [ 1 0 − 2 0 1 4 0 0 3 ] A \sim \begin{bmatrix}1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & -1 & -1\end{bmatrix} \sim\begin{bmatrix}1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 0 & 3\end{bmatrix} A100011241100010243
由于 A A A有3个主元位置,根据上述定理(c), A A A是可逆的。

一定要注意的是,虽然可逆矩阵定理将许多重要概念作了关联,但必须强调,可逆矩阵定理仅能用于方阵

可逆线性变换

当矩阵 A A A可逆时,方程 A − 1 A x = x A^{-1}A \boldsymbol x = \boldsymbol x A1Ax=x可看作关于线性变换的一个命题:
在这里插入图片描述
线性变换 T : R n → R n T:\mathbb R^n \rightarrow \mathbb R^n T:RnRn称为可逆的,若存在函数 S : R n → R n S:\mathbb R^n \rightarrow \mathbb R^n S:RnRn,使得:
对所有 R n \mathbb R^n Rn中的 x \boldsymbol x x S ( T ( x ) ) = x S(T(\boldsymbol x)) = \boldsymbol x S(T(x))=x
对所有 R n \mathbb R^n Rn中的 x \boldsymbol x x T ( S ( x ) ) = x T(S(\boldsymbol x)) = \boldsymbol x T(S(x))=x

下列定理说明若这样的 S S S存在,则它时唯一的而且必是线性变换,我们称 S S S T T T的逆,把它写成 T − 1 T^{-1} T1
定理:

T : R n → R n T:\mathbb R^n \rightarrow \mathbb R^n T:RnRn为线性变换, A A A T T T的标准矩阵。则 T T T可逆当且仅当 A A A是可逆矩阵。这时由 S ( x ) = A − 1 x S(\boldsymbol x)=A^{-1}\boldsymbol x S(x)=A1x定义的线性变换 S S S是满足 S ( T ( x ) ) = x S(T(\boldsymbol x)) = \boldsymbol x S(T(x))=x T ( S ( x ) ) = x T(S(\boldsymbol x)) = \boldsymbol x T(S(x))=x的唯一函数。

证:

T T T是可逆的,则 T ( S ( x ) ) = x T(S(\boldsymbol x)) = \boldsymbol x T(S(x))=x说明 T T T是从 R n \mathbb R^n Rn映上到 R n \mathbb R^n Rn的映射,因若 b \boldsymbol b b属于 R n \mathbb R^n Rn x = S ( b ) \boldsymbol x = S(\boldsymbol b) x=S(b),则 T ( x ) = T ( S ( b ) ) = b T(\boldsymbol x) = T(S(\boldsymbol b)) = \boldsymbol b T(x)=T(S(b))=b,所以每个 b \boldsymbol b b属于 T T T的值域,于是由上述定理(i), A A A为可逆的。
反之,若 A A A是可逆的,令 S ( x ) = A − 1 x S(\boldsymbol x)=A^{-1}\boldsymbol x S(x)=A1x,则 S S S是线性变换,且显然 S S S满足 S ( T ( x ) ) = x S(T(\boldsymbol x)) = \boldsymbol x S(T(x))=x T ( S ( x ) ) = x T(S(\boldsymbol x)) = \boldsymbol x T(S(x))=x。例如: S ( T ( x ) ) = S ( A x ) = A − 1 ( A x ) = x S(T(\boldsymbol x)) = S(A\boldsymbol x)=A^{-1}(A\boldsymbol x) = \boldsymbol x S(T(x))=S(Ax)=A1(Ax)=x。于是 T T T是可逆的。

例:
T : R n → R n T:\mathbb R^n \rightarrow \mathbb R^n T:RnRn是一对一线性变换,则 T T T会如何?
解:

T T T的标准矩阵 A A A的列是线性无关的,所以根据可逆矩阵定理, A A A是可逆的,而且 T T T R n \mathbb R^n Rn映上到 R n \mathbb R^n Rn,所以, T T T为可逆。

思考

可逆矩阵有两大特性:

  • 可逆矩阵一定是方阵
  • 可逆矩阵对应的线性方程存在唯一解

正是这两个特性,让可逆矩阵和之前学到的一些概念很好的关联了起来,例如主元位置、线性无关、空间变换等等概念,线性代数中一个主要的任务就是寻找不同概念之间的等价性。

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值