矩阵代数(三)- 可逆矩阵的特征

小结

  1. 可逆矩阵定理
  2. 可逆线性变换

可逆矩阵定理

定理8(可逆矩阵定理)
A \boldsymbol{A} A n × n n \times n n×n矩阵,则下列命题是等价的,即对某一特定的 A \boldsymbol{A} A,它们同时为真或同时为假。
a .    A a.\;\boldsymbol{A} a.A是可逆矩阵。
b .    A b.\;\boldsymbol{A} b.A行等价于 n × n n \times n n×n单位矩阵。
b .    A b.\;\boldsymbol{A} b.A n n n个主元位置。
d .    d.\; d.方程 A x = 0 \boldsymbol{Ax}=\boldsymbol{0} Ax=0仅有平凡解。
e .    A e.\;\boldsymbol{A} e.A的各列线性无关。
f .    f.\; f.线性变换 x ↦ A x \boldsymbol{x}\mapsto\boldsymbol{Ax} xAx是一对一的。
g .    g.\; g. R n \mathbb{R}^{n} Rn中任意 b \boldsymbol{b} b,方程 A x = b \boldsymbol{Ax}=\boldsymbol{b} Ax=b至少有一个解。
h .    A h.\;\boldsymbol{A} h.A的各列生成 R n \mathbb{R}^{n} Rn
i .    i.\; i.线性变换 x ↦ A x \boldsymbol{x}\mapsto\boldsymbol{Ax} xAx R n \mathbb{R}^{n} Rn映上到 R n \mathbb{R}^{n} Rn
j .    j.\; j.存在 n × n n \times n n×n矩阵 C \boldsymbol{C} C使 C A = I \boldsymbol{CA}=\boldsymbol{I} CA=I
k .    k.\; k.存在 n × n n \times n n×n矩阵 D \boldsymbol{D} D使 A D = I \boldsymbol{AD}=\boldsymbol{I} AD=I
l .    A T l.\;\boldsymbol{A}^{T} l.AT是可逆矩阵。

应用可逆矩阵定理来判断 A \boldsymbol{A} A是否可逆: A = [ 1 0 − 2 3 1 − 2 − 5 − 1 9 ] \boldsymbol{A}=\begin{bmatrix}1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9\end{bmatrix} A=135011229
解: A \boldsymbol{A} A [ 1 0 − 2 0 1 4 0 − 1 − 1 ] \begin{bmatrix}1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & -1 & -1\end{bmatrix} 100011241 [ 1 0 − 2 0 1 4 0 0 3 ] \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 0 & 3\end{bmatrix} 100010243
所以 A \boldsymbol{A} A有3个主元位置, A \boldsymbol{A} A是可逆的。

可逆线性变换

线性变换 T : R n → R n \boldsymbol{T}:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} T:RnRn称为可逆的,若存在变换 S : R n → R n \boldsymbol{S}:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} S:RnRn使得
a .    a.\; a.对所有的 R n \mathbb{R}^{n} Rn中的 x \boldsymbol{x} x S ( T ( x ) ) = x \boldsymbol{S}(\boldsymbol{T}(\boldsymbol{x}))=\boldsymbol{x} S(T(x))=x
b .    b.\; b.对所有的 R n \mathbb{R}^{n} Rn中的 x \boldsymbol{x} x T ( S ( x ) ) = x \boldsymbol{T}(\boldsymbol{S}(\boldsymbol{x}))=\boldsymbol{x} T(S(x))=x
我们称 S \boldsymbol{S} S T \boldsymbol{T} T的逆,把它写成 T − 1 \boldsymbol{T}^{-1} T1

T : R n → R n \boldsymbol{T}:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} T:RnRn为线性变换, A \boldsymbol{A} A T \boldsymbol{T} T的标准矩阵。则 T \boldsymbol{T} T可逆当且仅当 A \boldsymbol{A} A是可逆矩阵。这时由 S ( x ) = A − 1 \boldsymbol{S}(x)=\boldsymbol{A}^{-1} S(x)=A1定义的线性变换S就是 T \boldsymbol{T} T的逆。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值