小结
- 可逆矩阵定理
- 可逆线性变换
可逆矩阵定理
定理8(可逆矩阵定理)
设
A
\boldsymbol{A}
A为
n
×
n
n \times n
n×n矩阵,则下列命题是等价的,即对某一特定的
A
\boldsymbol{A}
A,它们同时为真或同时为假。
a
.
  
A
a.\;\boldsymbol{A}
a.A是可逆矩阵。
b
.
  
A
b.\;\boldsymbol{A}
b.A行等价于
n
×
n
n \times n
n×n单位矩阵。
b
.
  
A
b.\;\boldsymbol{A}
b.A有
n
n
n个主元位置。
d
.
  
d.\;
d.方程
A
x
=
0
\boldsymbol{Ax}=\boldsymbol{0}
Ax=0仅有平凡解。
e
.
  
A
e.\;\boldsymbol{A}
e.A的各列线性无关。
f
.
  
f.\;
f.线性变换
x
↦
A
x
\boldsymbol{x}\mapsto\boldsymbol{Ax}
x↦Ax是一对一的。
g
.
  
g.\;
g.对
R
n
\mathbb{R}^{n}
Rn中任意
b
\boldsymbol{b}
b,方程
A
x
=
b
\boldsymbol{Ax}=\boldsymbol{b}
Ax=b至少有一个解。
h
.
  
A
h.\;\boldsymbol{A}
h.A的各列生成
R
n
\mathbb{R}^{n}
Rn。
i
.
  
i.\;
i.线性变换
x
↦
A
x
\boldsymbol{x}\mapsto\boldsymbol{Ax}
x↦Ax把
R
n
\mathbb{R}^{n}
Rn映上到
R
n
\mathbb{R}^{n}
Rn。
j
.
  
j.\;
j.存在
n
×
n
n \times n
n×n矩阵
C
\boldsymbol{C}
C使
C
A
=
I
\boldsymbol{CA}=\boldsymbol{I}
CA=I。
k
.
  
k.\;
k.存在
n
×
n
n \times n
n×n矩阵
D
\boldsymbol{D}
D使
A
D
=
I
\boldsymbol{AD}=\boldsymbol{I}
AD=I。
l
.
  
A
T
l.\;\boldsymbol{A}^{T}
l.AT是可逆矩阵。
应用可逆矩阵定理来判断
A
\boldsymbol{A}
A是否可逆:
A
=
[
1
0
−
2
3
1
−
2
−
5
−
1
9
]
\boldsymbol{A}=\begin{bmatrix}1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9\end{bmatrix}
A=⎣⎡13−501−1−2−29⎦⎤。
解:
A
\boldsymbol{A}
A~
[
1
0
−
2
0
1
4
0
−
1
−
1
]
\begin{bmatrix}1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & -1 & -1\end{bmatrix}
⎣⎡10001−1−24−1⎦⎤~
[
1
0
−
2
0
1
4
0
0
3
]
\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 0 & 3\end{bmatrix}
⎣⎡100010−243⎦⎤
所以
A
\boldsymbol{A}
A有3个主元位置,
A
\boldsymbol{A}
A是可逆的。
可逆线性变换
线性变换
T
:
R
n
→
R
n
\boldsymbol{T}:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n}
T:Rn→Rn称为可逆的,若存在变换
S
:
R
n
→
R
n
\boldsymbol{S}:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n}
S:Rn→Rn使得
a
.
  
a.\;
a.对所有的
R
n
\mathbb{R}^{n}
Rn中的
x
\boldsymbol{x}
x,
S
(
T
(
x
)
)
=
x
\boldsymbol{S}(\boldsymbol{T}(\boldsymbol{x}))=\boldsymbol{x}
S(T(x))=x
b
.
  
b.\;
b.对所有的
R
n
\mathbb{R}^{n}
Rn中的
x
\boldsymbol{x}
x,
T
(
S
(
x
)
)
=
x
\boldsymbol{T}(\boldsymbol{S}(\boldsymbol{x}))=\boldsymbol{x}
T(S(x))=x。
我们称
S
\boldsymbol{S}
S是
T
\boldsymbol{T}
T的逆,把它写成
T
−
1
\boldsymbol{T}^{-1}
T−1。
设 T : R n → R n \boldsymbol{T}:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} T:Rn→Rn为线性变换, A \boldsymbol{A} A为 T \boldsymbol{T} T的标准矩阵。则 T \boldsymbol{T} T可逆当且仅当 A \boldsymbol{A} A是可逆矩阵。这时由 S ( x ) = A − 1 \boldsymbol{S}(x)=\boldsymbol{A}^{-1} S(x)=A−1定义的线性变换S就是 T \boldsymbol{T} T的逆。