paddle video_tag模型涉及的性能指标
1、精确率(precision)和准确率(accuracy)
实际\预测 | 正 | 负 |
---|---|---|
正 | TP(True Positive) | FN(False Negative) |
负 | FP(False Positive) | TN(True Negative) |
精确率是针对我们预测结果而言的,它表示的是预测为正的样本中有多少是真正的正样本。那么预测为正就有两种可能了,一种就是把正类预测为正类(TP),另一种就是把负类预测为正类(FP)
召回率是针对我们原来的样本而言的,它表示的是样本中的正例有多少被预测正确了。那也有两种可能,一种是把原来的正类预测成正类(TP),另一种就是把原来的正类预测为负类(FN)。
2、评价指标Global Average Precision
Global Average Precision 指标描述
当K = 1 时,该评价指标也叫micro Average Precision
对于每个测试图像,模型将预测一个地标标签和一个相应的置信度得分。 评估将每个预测视为一长串预测(按置信度分数按降序排序)中的单个数据点,然后根据该列表计算平均精度。 按置信度得分降序排列排列,并根据此列表计算Average Precision 。
如果提交具有 N 个预测(标签/置信对),并按它们的置信度得分从高到低排序,则全局平均精度(Global Average Precision, GAP)的计算公式为:
N:系统在所有查询中返回的预测总数
M:是查询集合总数中至少有一个样本可见的查询总数(请注意,某些查询可能未描述样本)
P(i):是rank i的Precision。 (例如:考虑rank3-有3个预测,其中2个是正确的。那么P(3) = 2/3)
rel(i):表示预测i的相关性:如果第i个预测正确,则为1,否则为0
3、评价指标loss
其他机器学习性能指标
1、ROC 曲线
2、AUC
AUC(Area Under Curve)被定义为ROC曲线下的面积,显然这个面积的数值不会大于1。
AUC含义为:随机挑选一个正样本以及一个负样本,分类器判定正样本的值高于负样本的概率就是 AUC 值。
简单说:AUC值越大的分类器,正确率越高。
AUC=1,完美分类器,采用这个预测模型时,不管设定什么阈值都能得出完美预测。绝大多数预测的场合,不存在完美分类器。
0.5<AUC<1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值。
AUC=0.5,跟随机猜测一样(例:丢铜板),模型没有预测价值。
AUC<0.5,比随机猜测还差;但只要总是反预测而行,就优于随机猜测,因此不存在 AUC<0.5 的情况。
既然已经这么多评价标准,为什么还要使用ROC和AUC呢?因为ROC曲线有个很好的特性:当测试集中的正负样本的分布变化的时候,ROC曲线能够保持不变。在实际的数据集中经常会出现类不平衡(class imbalance)现象,即负样本比正样本多很多(或者相反)