什么是暹罗网络?
暹罗网络是一种特殊类型的神经网络,是最简单、最常用的one-shot学习算法之一。
one-shot学习是一种每类只从一个训练例子中学习的技术。
暹罗网络主要用于在每个类中没有很多数据点的应用程序中。
为什么要使用暹罗网络?
例如,假设我们想为我们的组织建立一个人脸识别模型,大约有500人在我们的组织中工作。如果我们想用卷积神经网络(CNN)从零开始建立人脸识别模型,那么我们需要这500个人的很多图像来训练网络,以获得良好的准确度。但是很明显,我们不会为这500个人提供太多的图像,所以使用卷积神经网络(CNN)或任何深度学习算法来建立模型是不可行的,除非我们有足够的数据点。因此,在这种情况下,我们可以使用复杂的one-shot学习算法,比如暹罗网络,它可以从更少的数据点学习。
暹罗网络是如何运作的?
但是暹罗网络是如何运作的呢?暹罗网络基本上由两个对称的神经网络组成ÿ