python使用深度神经网络实现识别暹罗与英短

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/xuduzhoud/article/details/79142864

先来上两张图看看那种猫是暹罗?那种猫是英短?

第一张暹罗第二张英短

 你以后是不是可以识别了暹罗和英短了?大概能,好像又不能。这是因为素材太少了,我们看这两张图能分别提取出来短特征太少了。那如果我们暹罗短放100张图,英短放100张图给大家参考,再给一张暹罗或者英短短照片是不是就能识别出来是那种猫了,即使不能完全认出来,是不是也有90%可能是可以猜猜对。那么如果提供500张暹罗500张英短短图片呢,是不是猜对的概率可以更高?

 我们是怎么识别暹罗和英短的呢?当然是先归纳两种猫的特征如面部颜色分布、眼睛的颜色等等,当再有一张要识别短图片时,我们就看看面部颜色分布、眼睛颜色是不是可暹罗的特征一致。

同样把识别暹罗和英短的方法教给计算机后,是不是计算机也可以识别这两种猫?

那么计算机是怎么识别图像的呢?先来看一下计算机是怎么存储图像的。


图像在计算机里是一堆按顺序排列的数字,1到255,这是一个只有黑白色的图,但是颜色千变万化离不开三原色——红绿蓝。


这样,一张图片在计算机里就是一个长方体!depth为3的长方体。每一层都是1到255的数字。

让计算机识别图片,就要先让计算机了解它要识别短图片有那些特征。提取图片中的特征就是识别图片要做的主要工作。

下面就该主角出场了,卷及神经网络(Convolutional Neural Network, CNN).

最简单的卷积神经网络就长下面的样子。


分为输入、卷积层、池化层(采样层)、全连接和输出。每一层都将最重要的识别信息进行压缩,并传导至下一层。

卷积层:帮助提取特征,越深(层数多)的卷积神经网络会提取越具体的特征,越浅的网络提取越浅显的特征。

池化层:减少图片的分辨率,减少特征映射。

全连接:扁平化图片特征,将图片当成数组,并将像素值当作预测图像中数值的特征。

  1. 卷积
    卷积层从图片中提取特征,图片在计算机中就上按我们上面说的格式存储的(长方体),先取一层提取特征,怎么提取?使用卷积核(权值)。做如下短操作:

    观察左右两个矩阵,矩阵大小从6x6 变成了 4x4,但数字的大小分布好像还是一致的。看下真实图片:

    图片好像变模糊了,但这两个图片大小没变是怎么回事呢?其实是用了如下的方式:same padding

    在6x6的矩阵周围加了一圈0,再做卷积的时候得到的还是一个6x6的矩阵,为什么加一圈0这个和卷积核大小、步长和边界有关。自己算吧。
    上面是在一个6x6的矩阵上使用3X3的矩阵做的演示。在真实的图片上做卷积是什么样的呢?如下图:

    对一个32x32x3的图使用10个5x5x3的filter做卷积得到一个28x28x10的激活图(激活图是卷积层的输出).
  2. 池化层
    减少图片的分辨率,减少特征映射。怎么减少的呢?
    池化在每一个纵深维度上独自完成,因此图像的纵深保持不变。池化层的最常见形式是最大池化。
    可以看到图像明显的变小了。如图:

    在激活图的每一层的二维矩阵上按2x2提取最大值得到新的图。真实效果如下:

    随着卷积层和池化层的增加,对应滤波器检测的特征就更加复杂。随着累积,就可以检测越来越复杂的特征。这里还有一个卷积核优化的问题,多次训练优化卷积核。

    下面使用apple的卷积神经网络框架TuriCreate实现区分暹罗和英短。(先说一下我是在win10下装的熬夜把电脑重装了不下3次,系统要有wls,不要用企业版,mac系统和ubuntu系统下安装turicreae比较方便)
    首先准备训练用图片暹罗50张,英短50长。测试用图片10张。
    上代码:(开发工具anaconda,python 2.7)
    # coding: utf-8
    
    # In[51]:
    import turicreate as tc
    # In[52]:
    train_data_path = '/mnt/h/image/train'
    # In[53]:
    train_data  = tc.image_analysis.load_images(train_data_path, with_path = True)
    # In[54]:
    train_data['label'] = train_data['path'].apply(lambda path: 'xianluo' if 'xianluo' in path else 'yingduan')
    # In[56]:
    train_data
    # In[57]:
    train_data.save('cat.sframe')
    # In[58]:
    test_data_path = '/mnt/h/image/test/'
    # In[59]:
    test_data  = tc.image_analysis.load_images(test_data_path, with_path = True)
    # In[60]:
    test_data['label'] = test_data['path'].apply(lambda path: 'xianluo' if 'x' in path else 'yingduan')
    # In[61]:
    test_data
    # In[62]:
    model = tc.image_classifier.create(train_data, target='label')
    # In[63]:
    predictions = model.predict(test_data)
    # In[64]:
    metrics = model.evaluate(test_data)
    print(metrics['accuracy'])
    # In[65]:
    predictions
    # In[66]:
    test_data['label']
    # In[67]:
    test_data
    
    
    数据放到了h盘image目录下,我是在win10下装的ubuntu,所以h盘挂在mnt/下。

    test的文件:(x指暹罗,y指英短,这样命名是为了代码里给测试图片区分猫咪类型)

    test_data['label'] = test_data['path'].apply(lambda path: 'xianluo' if 'x' in path else 'yingduan')

    第一次结果如下:

    训练精度0.955 验证精度才0.75 正确率才0.5。好吧,看来是学习得太少,得上三年高考五年模拟版,将暹罗和英短的图片都增加到100张。在看结果。

    这次训练精度就达到0.987了,验证精度1.0,正确率1.0 牛逼了。
    看下turicreate识别的结果:

    我们实际图片上猫是:(红色为真实的猫的类型-在代码里根据图片名称标记的,绿色为识别出来的猫的类型)

    可以看到两者是一致的。牛逼了训练数据才两百张图片,就可以达到这种效果。



展开阅读全文

没有更多推荐了,返回首页