python模型输出结果_keras 模型参数,模型保存,中间结果输出操作

本文展示了如何使用Keras进行模型构建、参数获取、模型保存以及如何输出中间结果。通过实例演示了模型训练、权重获取、中间层输出以及图像数据预处理和展示。
摘要由CSDN通过智能技术生成

我就废话不多说了,大家还是直接看代码吧~

'''

Created on 2018-4-16

'''

import keras

from keras.models import Sequential

from keras.layers import Dense

from keras.models import Model

from keras.callbacks import ModelCheckpoint,Callback

import numpy as np

import tflearn

import tflearn.datasets.mnist as mnist

x_train, y_train, x_test, y_test = mnist.load_data(one_hot=True)

x_valid = x_test[:5000]

y_valid = y_test[:5000]

x_test = x_test[5000:]

y_test = y_test[5000:]

print(x_valid.shape)

print(x_test.shape)

model = Sequential()

model.add(Dense(units=64, activation='relu', input_dim=784))

model.add(Dense(units=10, activation='softmax'))

model.compile(loss='categorical_crossentropy',

optimizer='sgd',

metrics=['accuracy'])

filepath = 'D:\\machineTest\\model-ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5'

# filepath = 'D:\\machineTest\\model-ep{epoch:03d}-loss{loss:.3f}.h5'

checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min')

print(model.get_config

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值