这几天在机器学习中对sklearn引入数据,拆分数据,训练数据,测试数据,导出模型都有了一个大概的了解
但是对于导出的模型如何去进行使用,让我产生了一些疑惑,
当我解决这些疑问后,我发现是由于没有pandas的使用基础才导致了这些疑惑,
所以建议小伙伴在学习sklearn之前,要能对pandas的使用有一个基本的了解
这里讲一下我是怎么实现训练模型的导出和导入预测数据并将数据显示在原数据集中的
训练模型、导出模型
首先我们不采用任何特殊操作,简单的对sklearn的datasets中提供的load_iris(鸢尾花)数据集进行学习
并通过sklearn通过的保存模块joblib来导出训练模型
这里一个地方要注意,joblib.dump() 第一个参数填写的是训练出来的模型,第二个参数填写的是模型存放的位置
比如图中生成了一个clf模型,并将模型存放在同级目录下的save文件夹中生成clf.pkl文件
导入模型、预测数据、导出预测数据
先看一下我们的所要进行预测的特征值数据应该是怎样的规范
我们新引入的数据,特征值的命名要和训练时的命名一样,字段的数量也要一样,