反向题在测试问卷信效度_问卷前测除了信效度,你还需知道...

之前的文章曾提到过信度、效度是一份量表问卷品质的保障,其实,除信效度外,项目分析也是编制、评价问卷量表的重要环节。这次就与大家讨论一下项目分析。

概念

项目分析也称作区分度分析,其目的在于研究数据能否有效的区分出高低水平,从而评价某个具体题项的好坏。

应用场景

项目分析多出现在数据分析前期阶段,预测试问卷数据收集完毕后,要对问卷进行项目分析、信度分析、效度分析,以检验问卷的质量为正式问卷的编制提供依据。

项目分析主要应用场景如下:经典量表引用时,考察量表是否具有区分性

设计新量表时,考察量表题目设计是否具有区分性

考试试卷是否具有区分性,以选拔适合的题目

原理说明

项目分析的基本原理在于,求出所有样本的题项加总(比如学生语文、数学和英语三科成绩),接着将求和数据分为低分组,中分组和高分组三部分。使用T检验去对比低分组和高分组之间是否有着明显的差异,如果具有明显的差异,则说明具有良好的区分性。反之则说明数据区分性差,考虑删除或修改对应的题项。

操作方法

项目分析通常以27%和73%作为区分标准,把一份数据分为低分组、中分组和高分组。低于27%分位数的数据为低分组,27%~73%之间称为中分组;高于73%则称为高分组(SPSSAU也提供25%和75%的判断标准)。

1)如有反向计分的题项,首先需要做反向计分处理,处理方法:【数据处理】→【数据编码】,将答项反向赋值即可(如果没有可忽略此步骤)反向计分

2)选择【问卷研究】→【项目分析】

3)将问卷题项拖拽到右侧分析框内(量表题)

4)“点击开始项目分析”即可

案例分析

(1)背景

针对一份“工作满意度”预试问卷进行项目分析,以判断问卷各题项是否有较好的区分度。

(2)操作

共31项分析项,将全部31项拖拽至右侧框内,点击“开始项目分析”项目分析操作

(3)结果分析

截取了部分分析结果,可以看到各分析项均呈现出显著性(P<0.05),意味着题项具有良好的区分性,应该保留题项。如果有分析项显著性分析P>0.05,则意味着此项区分度差,应当删除该题。分析结果

其他说明SPSSAU会默认将中间过程涉及的数据,包括求和项,以及分组级别项返回,名称分别类似为:“项目分析****_总分”,“项目分析****_分组级别”。

项目分析与信度分析的区别在于,信度分析检测的是整份量表或多个题项整体的可靠程度;项目分析探究的是高低分两个组在每个题目上的差异情况。

更多分析方法相关内容可登录SPSSAU官网查看

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值