Summary
正态总体均值的假设检验目的是推断总体均值与
的大小关系,其中
为已知常数。主要有如下三种假设:(1)
(2)
(3)
。在SPSS中,做上述3个假设的操作完全一样,结果的输出也完全一样,但是对输出结果中p值的解读却大不一样,稍微不慎就会得出错误的结论。本文将教你如何获取在不同假设下SPSS输出结果中的p值,内容分为:“举例”,“ P值的含义”,“ 假设(1)在SPSS中p值的读取”,“ 假设(2)在SPSS中p值的读取”,“ 假设(3)在SPSS中p值的读取”。
NO.1
举例
从甲地发送一个信号到乙地。设乙地接收到的信号值是一个服从正态分布的随机变量,其中
为甲地发送的真实信号值。现甲地重复发送同一信号5次,乙地接收到的信号值为:
8.05 8.15 8.2 8.1 8.25,
设接收方有理由猜测甲地发送的信号值为8、大于8或小于8,问能否接受这3个猜测?(显著性水平=0.05)
首先根据问题,分别作出相应假设:
(1);
(2);
(3)。
从表1中可以看出,因此对于假设(1):
,
,故拒绝原假设
;假设(2):
,首先判断出
,故
,故接受原假设
;假设(3):
,首先判断出
,故
,故拒绝原假设。
可以看出,上述3个假设中,p值的得出都来源于输出结果中的Sig,但是p值的获取以及p值与显著性水平的比较方式却极为不同。但是,最后得出的结论却具有一致性,并不互相矛盾。你知道其中的原因吗?下面我们将详细讲解。
下面的讲解由于逻辑性较强显得有点枯燥,如果你不想仔细阅读,找到每一小节中的“划重点”也能知道原因哦~
NO.2
p值的含义上述3个假设各自的内涵不同。假设(1)想要收集证据说明,即证明
是








