1引言高速数控铣削加工广泛应用于航空、航天、汽车、模具制造等行业。切削加工参数的选择直接关系到机床效率的发挥,如何避免发生颤振又是选择切削参数时必须考虑的一个关键因素。颤振是指以较大切削速度切削时发生在刀具和工件之间的一种自激振荡现象。颤振轻则导致加工表面质量下降、生产效率降低、轴承过载、主轴寿命缩短,重则导致刀具破损、工件及主轴毁坏。对铣削加工进行颤振稳定域仿真,选择稳定区内的参数进行切削是避免颤振最有效的手段。2基本理论2.1动态铣削力建模铣削加工系统可简化成两个相互垂直自由度的“弹簧-阻尼”系统(见图1)。考虑先前刀齿所留下波状表面的影响,对刀齿施用瞬时刚性力模型,忽略静态变形力的影响、通过累加得到的动态铣削力合力如下:FxFy$%=21!Ki!!yxxx!!yyyy&’x$%y(1)式中,axx、axy、ayx、ayy为方向性系数,写成时域形式为:F(t)=21!Ki[A(t)](t)(2)式中A(t)为=N、T=2/的周期函数,其Fourier级数展开形2图1铣削系统动力学模型[A(t)]=r=-)[Ar]eirt[Ar]=T10T*[A(t)]e-jrt(3)忽略高次谐波的影响,保留直流分量A(0):[A(0)]=1$p$ex$sl*[A($)]d$=2N!!!yxxx!!yyyy+,(4)将式(4)代入式(2)有:F(t)=21!Ki[A0](t)(5)2颤振稳定域极限计算刀具/工件接触区的频响函数%(i")可表示为:[!(i")]=!x(xi")!x(yi")!y(xi")!y(yi"!")(6)当前时刻(t)和前一个刀齿切削周期(t-T)的振动矢量:r=x(t)y(t)T;r0=x(t-T)y(t-T)T(7)在颤振频率处振动函数的频域描述为:(ri"c)=[!(i")]Fei"ctr(0i"c)=e-i"cT(ri"c)(8)得到再生位移如下:(i"c)=(ri"c)-r(0i"c)=[1-e-i"cT]ei"ct[!(i"c)]F(9)将式(9)代入式(5),可得:Fei"ct=21#Ki[1-e-i"cT][A0][!(i"c)]Fei"ct(10)闭环动态铣削系统的特征方程为:[I]-21Ki$(1-e-i"cT)[A0][%(i"c)]=0(11)当且仅当行列式为零时,式(10)才有非零解:det[[I]]+&[G(0i"c)]]=0(12)特征方程的特征值为:&4N!$K(i1-e-i"cT)(13)忽略交叉传函,可得特征值分析解:&=-21a0(a1$a12-4a0)(14)式中:a0=!x(xi"c)!y(yi"c)(axxayy-axyayx)a1=axx!x(xi"c)+axx!y(yi"c)(15)考虑传递函数为复数形式,其特征值应包含实、虚两部分,而临界轴向切深为实数,将&=&real+&image及e-i"cT=cos"cT+isin"cT代入式(13)并令虚部为零有:K=&I&R=1-csoins(""cTc)T=tan!2-"2cT!"(16)对上式进行求解可得颤振频率和主轴转速关系:"cT=’+2k!;’=!-2;(n=60(/NT)(17)式中:’为内外调制之间的相移,k对应于一个刀齿周期内振动数,n为主轴转速,N为刀齿数,极限切深为:alim=-2!&N(RK1t+K2)(18)综上所述,对于给定刀具/工件材料切削力系数、加工系统传递函数和颤振频率,&R、&I可由式(14)求得,进而使用式(17)和(18)求出相应的主轴转速和临界轴向切深。在一定颤振频率范围和振动波数下重复上述过程,可获得铣削
稳定域的画法 matlab,基于MATLAB的铣削加工颤振稳定域仿真算法及实现
最新推荐文章于 2024-09-19 11:12:00 发布