函数序列的逐点收敛和一致收敛的理解

目录

1.  逐点收敛(Pointwise Convergence)

1.1  逐点收敛定义

1.2  对逐点收敛的理解

1.3  举例说明

2.  一致收敛(Uniform Convergence)

2.1  一致收敛定义

2.2  对一致收敛的理解

2.3  举例说明


1.  逐点收敛(Pointwise Convergence)

1.1  逐点收敛定义

         我们令 A \subset \mathbb{R} 为一个非空子集,并假设对于每一个 n \in \mathbb{N} ,我们都有一个函数 f_{n}: A \rightarrow \mathbb{R} 。则我们称 ( f_{n} )= (f_{1}, f_{2} ,f_{3} , ...) 是 A上的一个函数序列

定义  (f_{n})  A \subseteq \mathbb{R} 上的一个函数序列。若对于每一个  x \in A ,序列 (f_{n}(x)) 收敛于一个数 f(x)即 

\displaystyle \lim_{n \rightarrow \infty}f_{n}(x)=f(x)

则我们称函数序列 (f_{n}) 在 A逐点收敛于函数 f (x) 。在这种情况下,我们称函数 f (x) 为序列 (f_{n}) 的逐点极限

引理(判别法)  (f_{n})  A 上的一个函数序列, f (x): A \rightarrow \mathbb{R} 为一个函数。当且仅当对于每一个 x \in A 和每一个 \varepsilon > 0 , 都存在一个K \in \mathbb{N} ,使得对于所有的 n \geq K 都有 |f_{n}(x) - f (x) | < \varepsilon 则称函数序列 (f_{n}) 逐点收敛于函数 f (x): A \rightarrow \mathbb{R} 。

1.2  对逐点收敛的理解

         根据定义,“对于每一个 xA 和每一个ε > 0”,我们应理解为每次先固定一个x和一个 ε (我们不妨设为 x_{0}  和 \varepsilon_{0} ),再去求这个 K ,这个函数序列在 nK 之后的所有序列项 ,其 \{ f_{K}, f_{K+1} ,f_{K+2} , ... \} 中的所有项与这个固定的 x_{0} 之间的函数值都在 \varepsilon_{0} 范围内,即 |f_{n}(x) - f (x_{0}) | <\varepsilon_{0} 。当我们取下一个 x和另一个 ε (我们不妨设为 x_{1} 和 \varepsilon_{1} )时,前面这个 K 就未必适合了,因此 K 又得变化,因此,所谓的对于每一个 xA 和每一个ε > 0 ,是逐个取值的。也就是说,这个K 的取值既受 x 的约束,也受ε 的约束,不同的 x ε 取值,这个 K 是不一样的,不存在某个 K 和每一个ε > 0对整个区间上的x 都成立。

1.3  举例说明

         我们设这个函数序列 ( f_{n}(x) = \frac{x}{n} ) , 其示意图如图 1.3.1所示。

-------------------------------图 1.3.1:函数序列 ( f_{n}(x) = \frac{x}{n} ) 示意图---------------------------------------

我们看到,这个函数序列的逐点收敛极限为 f(x) = 0 。当我们固定下第一个 x 值和ε > 0 时,K = 3 就足够大,n ≥ 3 之后的每一个 f_{n}(x) 在这一点的函数值与 (x) = 0 的距离都小于ε 。接下来,我们换一个 x 值,将取值向 x轴正方向前移一个位置,在这个位置,K = 3 已经不满足要求了,在这个 x 值处,f_{3}(x) 函数值与 (x) = 0 的距离大于 ε ,这时候,要取 K = 4 才能满足要求。也就是说,的取值既受限于x,与受限于 ε ,并不存在一个 K 对于取定的 ε 对所有 x 都成立(一致收敛例外)。从函数序列的图像的直观性上来讲,函数序列图像之间随着的变化其间距变化幅度较大,不一致。

2.  一致收敛(Uniform Convergence)

2.1  一致收敛定义

定义(判别法) (f_{n})  A 上的一个函数序列, f (x): A \rightarrow \mathbb{R} 为一个函数。若对于 任意 ε > 0 , 都存在一个 K\in \mathbb{N} ,使得只要 n \ge K 则对于所有的 x \in A ,都有 |f_{n}(x) - f (x) | < \varepsilon 则称函数序列 (f_{n}) 在 A上一致收敛于函数  f (x): A \rightarrow \mathbb{R} 。

2.2  对一致收敛的理解

         根据一致收敛的定义, K 的取值仅与ε 有关,而与 x 无关。当我们取定了一个ε之后,就可以找到这么一个 K 值,在这个值之后的所有 f_{n} 项,对于所有的x 值,其函数值与极限函数的距离都在ε 范围内。从直观上来看,这个 K 值之后的所有序列函数,其图像之间的间距变化幅度一致,总是在一定的范围内变化。

2.3  举例说明

我们设这个函数序列 ( f_{n}(x) = x + \frac{1}{n} ) , 其示意图如图 1.3.2所示。

----------------------------图 1.3.2:函数序列  ( f_{n}(x) = x + \frac{1}{n} ) 示意图-------------------------------------

我们看到,这个函数序列的一致收敛函数为 f(x) = x ,根据逐点收敛定义,首先它是逐点收敛的。而根据致收敛定义,它是一致收敛的。当我们取定了一个 ε 值之后,就能找到这么一个 K 值,nK 之后的所有函数序列对于有的 x ,它们与其极限函数之间的距离都小于ε 也就是说,K的取值仅于ε有关,与 x 取值。任意取定一个x之后,函数序列总是在某一项之后能满足对于所有的 x 取值,其与极限函数的距离都小于这个ε。这些函数序列图像之间的距离在一定范围内变动,不会无限变大,一致。

### 回答1: 逐点收敛一致收敛是两种不同的收敛方式。 逐点收敛指的是对于函数序列中的每一个点,都存在一个极限值,即对于任意的$x$,函数序列$f_n(x)$都收敛于$f(x)$。在逐点收敛的情况下,函数序列的极限函数$f(x)$可能会受到每个点的影响而不同。 一致收敛则指的是对于整个定义域内的所有点,函数序列都存在一个相同的极限函数$f(x)$,即对于任意的$\epsilon>0$,存在一个正整数$N$,使得当$n>N$时,对于任意的$x$,有$|f_n(x)-f(x)|<\epsilon$。在一致收敛的情况下,函数序列的极限函数$f(x)$不会受到任何一个点的影响而改变。 ### 回答2: 逐点收敛一致收敛是一种函数序列收敛的两种不同方式。 逐点收敛是指对于函数序列中的每一个点,若对于该点的任意一个邻域内,存在一个自然数N,使得从N开始,函数序列中的每一个函数在该邻域内都与该点的极限函数足够接近,即趋于收敛。也就是说,对于每个点,都可以选择一个适当的N值,使得序列中的函数都在该点附近逐点收敛至相同值。 而一致收敛则更进一步,它要求存在一个自然数N,使得从N开始,函数序列中的每一个函数与极限函数在全定义域上都足够接近。也就是说,对于整个定义域上的所有点来说,只需要选择一个适当的N值,函数序列中的函数在全定义域上都可以一致收敛到极限函数。 可以看出,区别主要在于逐点收敛只要求每一个点的邻域内存在一个足够接近的N值,而一致收敛要求函数序列在整个定义域上都足够接近。因此,一致收敛的条件较为严格,更加强调函数序列对于每个点的收敛行为的整体性质。而逐点收敛则更关注于每个点的局部性质,不要求在整个定义域上都收敛。 ### 回答3: 逐点收敛一致收敛都是序列函数列的收敛性质,区别在于收敛的程度和多个点的关系。 逐点收敛是指对于每一个点,在极限值附近存在一个足够大的整数N,使得对于所有大于N的正整数n,序列函数列的值与极限值的差距都可以任意小。也就是说,对于每个固定的点x,只要n足够大,序列函数列的值就会无限接近极限值。 一致收敛是指在整个定义域上,存在一个足够大的整数N,使得对于所有大于N的正整数n,序列函数列的值与极限值的差距都可以任意小。也就是说,对于所有的点x,只要n足够大,无论在定义域的哪个位置,序列函数列的值都会无限接近极限值。 区别在于逐点收敛只要求每一个点的收敛性,而不必关心其他点的收敛情况。一致收敛则要求在整个定义域上的每一个点都具有相同的收敛性。换句话说,一致收敛更加强调全局性的收敛性质,而逐点收敛更加侧重于局部性的收敛性质。 总结来说,逐点收敛一致收敛的区别在于对于多个点的收敛性要求。逐点收敛只要求每个点都可以趋近于极限值,而一致收敛要求整个定义域上的所有点都具有相同的收敛性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值