tensorflow 按维度相加_人工智能 TensorFlow 必知必会编程概念整理

40643eac0f62875b0fd8d394a78f8599.png

内容概括:

  • 学习 TensorFlow 编程模型的基础知识,重点了解以下概念:
  • 张量
  • 指令
  • 会话
  • 构建一个简单的 TensorFlow 程序,使用该程序绘制一个默认图并创建一个运行该图的会话

概念概览

TensorFlow 的名称源自张量,张量是任意维度的数组。借助 TensorFlow,您可以操控具有大量维度的张量。即便如此,在大多数情况下,您会使用以下一个或多个低维张量:

  • 标量是零维数组(零阶张量)。例如,'Howdy' 或 5
  • 矢量是一维数组(一阶张量)。例如,[2, 3, 5, 7, 11] 或 [5]
  • 矩阵是二维数组(二阶张量)。例如,[[3.1, 8.2, 5.9][4.3, -2.7, 6.5]]

TensorFlow 指令会创建、销毁和操控张量。典型 TensorFlow 程序中的大多数代码行都是指令。

TensorFlow (也称为计算图数据流图)是一种图数据结构。很多 TensorFlow 程序由单个图构成,但是 TensorFlow 程序可以选择创建多个图。图的节点是指令;图的边是张量。张量流经图,在每个节点由一个指令操控。一个指令的输出张量通常会变成后续指令的输入张量。TensorFlow 会实现延迟执行模型,意味着系统仅会根据相关节点的需求在需要时计算节点。

张量可以作为常量变量存储在图中。您可能已经猜到,常量存储的是值不会发生更改的张量,而变量存储的是值会发生更改的张量。不过,您可能没有猜到的是,常量和变量都只是图中的一种指令。常量是始终会返回同一张量值的指令。变量是会返回分配给它的任何张量的指令。

要定义常量,请使用 tf.constant 指令,并传入它的值。例如:

 x = tf.constant([5.2])

同样,您可以创建如下变量:

 y = tf.Variable([5])

或者,您也可以先创建变量,然后再如下所示地分配一个值(注意:您始终需要指定一个默认值):

 y = tf.Variable([0]) y = y.assign([5])

定义一些常量或变量后,您可以将它们与其他指令(如 tf.add)结合使用。在评估 tf.add 指令时,它会调用您的 tf.constant 或 tf.Variable 指令,以获取它们的值,然后返回一个包含这些值之和的新张量。

图必须在 TensorFlow 会话中运行,会话存储了它所运行的图的状态:

with tf.Session() as sess: initialization = tf.global_variables_initializer() print(y.eval())

在使用 tf.Variable 时,您必须在会话开始时调用 tf.global_variables_initializer,以明确初始化这些变量,如上所示。

注意:会话可以将图分发到多个机器上执行(假设程序在某个分布式计算框架上运行)。有关详情,请参阅分布式 TensorFlow。

总结

TensorFlow 编程本质上是一个两步流程:

  1. 将常量、变量和指令整合到一个图中。
  2. 在一个会话中评估这些常量、变量和指令。

创建一个简单的 TensorFlow 程序

我们来看看如何编写一个将两个常量相加的简单 TensorFlow 程序。

添加 import 语句

与几乎所有 Python 程序一样,您首先要添加一些 import 语句。 当然,运行 TensorFlow 程序所需的 import 语句组合取决于您的程序将要访问的功能。至少,您必须在所有 TensorFlow 程序中添加 import tensorflow 语句:

import tensorflow as tf

其他常见的 import 语句包括:

import matplotlib.pyplot as plt # 数据集可视化。import numpy as np # 低级数字 Python 库。import pandas as pd # 较高级别的数字 Python 库。

TensorFlow 提供了一个默认图。不过,我们建议您明确创建自己的 Graph,以便跟踪状态(例如,您可能希望在每个单元格中使用一个不同的 Graph)。

from __future__ import print_function​import tensorflow as tf​# Create a graph.g = tf.Graph()​# Establish the graph as the "default" graph.with g.as_default(): # Assemble a graph consisting of the following three operations: # * Two tf.constant operations to create the operands. # * One tf.add operation to add the two operands. x = tf.constant(8, name="x_const") y = tf.constant(5, name="y_const") sum = tf.add(x, y, name="x_y_sum")​​ # Now create a session. # The session will run the default graph. with tf.Session() as sess: print(sum.eval())

以上就是 tensorflow 必知必会的基础知识了,试着修改运行该项目,开始探索 tensorflow 吧。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值