第
6
章
腐蚀,膨胀,细化算法
今天所讲的内容属于一门新兴的学科:数学形态学
(Mathematical
Morphology)
。说起来很有
意思,
它是法国和德国的科学家在研究岩石结构时建立的一门学科。
形态学的用途主要是获
取物体拓扑和结构信息,
它通过物体和结构元素相互作用的某些运算,
得到物体更本质的形
态。在图象处理中的应用主要是:
(1)
利用形态学的基本运算,对图象进行观察和处理,从
而达到改善图象质量的目的;
(2)
描述和定义图象的各种几何参数和特征,如面积、周长、
连通度、颗粒度、骨架和方向性等。
限于篇幅,
我们只介绍二值图象的形态学运算,
对于灰度图象的形态学运算,
有兴趣的读者
可以阅读有关的参考书。
在程序中,
为了处理的方便,还是采用
256
级灰度图,不过只用到
了调色板中的
0
和
255
两项。
先来定义一些基本符号和关系。
1.
元素
设有一幅图象
X
,若点
a
在
X
的区域以内,则称
a
为
X
的元素,记作
a
∈
X
,如图
6.1
所示。
2.
B
包含于
X
设有两幅图象
B
,
X
。对于
B
中所有的元素
ai
,都有
ai
∈
X
,则称
B
包含于
(included in)X
,
记作
B