基于朴素贝叶斯分类器的西瓜数据集 2.0 预测分类_机器学习之朴素贝叶斯

该博客介绍了基于朴素贝叶斯分类器的原理,包括三个阶段:准备工作、分类器训练和应用。接着,通过R语言详细展示了如何使用caret、e1071和klaR包中的函数对西瓜数据集和威斯康星州乳腺癌数据集进行分类。
摘要由CSDN通过智能技术生成
ca2692c742eefb031e47d7aa751cb971.png

1.贝叶斯原理

朴素贝叶斯分类(Naive Bayesian,NB)源于贝叶斯理论,是一类基于概率的分类器,其基本思想:假设样本属性之间相互独立,对于给定的待分类项,求解在此项出现的情况下其他各个类别出现的概率。

265467bc71819185cbfa897129f0652b.png

朴素贝叶斯分类实现的三阶段

第一阶段,准备工作。

根据具体情况确定特征属性,并对每一特征属性进行划分,然后人工对一些待分类项进行分类,形成训练样本集合。

这一阶段的输入是所有待分类数据,输出是特征属性和训练样本。唯一需要人工处理的阶段,质量要求较高。

第二阶段,分类器训练阶段(生成分类器)。

计算每个类别在训练样本中出现频率及每个特征属性划分对每个类别的条件概率估计,并将结果记录。

其输入是特征属性和训练样本,输出是分类器。

第三阶段,应用阶段。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值