LeetCode周赛284-第四题:dijkstra(golang+cpp)

本文介绍了如何使用Dijkstra算法求解有向图中,从两个起点到终点的最小带权子图。通过枚举中间节点并计算各路径总权重,找到最优解。代码分别用Golang和C++实现,展示了堆优化的Dijkstra算法的应用。
摘要由CSDN通过智能技术生成

题目链接:LeetCode6032


题意

        给定一个有向图,两个起点(s1,s2)和一个终点(dest),要求求出路径最小的带权子图,从两个起点都可以到达终点,且该子图的所有边权之和最小。

思路

【力扣周赛讲解】【第 284 场周赛】得到要求路径的最小带权子图_哔哩哔哩_bilibili【力扣周赛讲解】【第 284 场周赛】得到要求路径的最小带权子图https://www.bilibili.com/video/BV1BU4y1o7GS?from=search&seid=9213995241827836213&spm_id_from=333.337.0.0

  • zerotrac(零神yyds)讲得特别好。
  • 大体思路就是枚举一个中间节点 a ,求s1a的最短路,s2a的最短路,desta的最短路,使得路径之和最小。
  • dijkstra算法,先求出s1,s2到所有点的距离,还有反向图中dest到所有点的距离
    • 这里的dijkstra要用堆优化的dijkstra,朴素的dijkstra不行。
    • golang当中的优先队列(或者说堆)操作,相对cpp复杂一点,需要实现接口。

代码(Golang)

type edge struct{
    to,weight int
}
const maxx int=int(1e18)

func dij(g [][]edge,source int)[]int{
    dis:=make([]int,len(g))
    for i:=range dis{
        dis[i]=maxx 
    }
    dis[source]=0

    h:=hp{{source,0}}
    for len(h)>0{
        p:=heap.Pop(&h).(pair)
        v:=p.v
        if dis[v]<p.dis{
            continue
        }
        for _,e:=range g[v]{
            to,w:=e.to,e.weight
            newDis:=dis[v]+w 
            if newDis<dis[to]{
                dis[to]=newDis
                heap.Push(&h,pair{to,newDis})
            }
        }
    }
    return dis
}


func minimumWeight(n int, edges [][]int, src1 int, src2 int, dest int) int64 {
    g,rg:=make([][]edge,n),make([][]edge,n)
    for _,ed:=range edges{
        g[ed[0]]=append(g[ed[0]],edge{ed[1],ed[2]})
        rg[ed[1]]=append(rg[ed[1]],edge{ed[0],ed[2]})
    }

    dis1,dis2,dis3:=dij(g,src1),dij(g,src2),dij(rg,dest)
    //fmt.Println(dis1,dis2,dis3)
    ans:=maxx
    for i:=0;i<n;i++{
        ans=min(ans,dis1[i]+dis2[i]+dis3[i])
    }
    if ans<maxx{
        return int64(ans)
    }
    return -1
}

type pair struct{
    v,dis int 
}
type hp []pair
func (h hp)Len()int {return len(h)}
func (h hp)Less(i,j int)bool{return h[i].dis<h[j].dis}
func (h hp)Swap(i,j int){h[i],h[j]=h[j],h[i]}
func (h*hp)Push(x interface{}){*h=append(*h,x.(pair))}
func (h*hp)Pop()(x interface{}){a:=*h;*h,x=a[:len(a)-1],a[len(a)-1];return}

func min(i,j int)int{
	if i>j{
		return j
	}
	return i
}

代码(Cpp)

class Solution {
public:
    typedef long long ll;
    const ll maxx=1e18;
    vector<ll> dij(vector<vector<pair<ll,ll>>>g,int source){
        vector<ll>dis(g.size(),maxx);
        dis[source]=0;
        priority_queue<pair<long long, int>, vector<pair<long long, int>>, greater<pair<long long, int>>> pq;

        pq.push({0ll,source});
        while(pq.size()>0){
            auto now=pq.top();
            pq.pop();
            ll w=now.first;int to=now.second;
            if (dis[to]<w){
                continue;
            }
            for (int i=0;i<g[to].size();i++){
                ll v=g[to][i].first,weight=g[to][i].second;
                ll nw=dis[to]+weight;
                if(nw<dis[v]){
                    dis[v]=nw;
                    pq.push({nw,v});
                }
            }
        }
        return dis;
    }
    long long minimumWeight(int n, vector<vector<int>>& edges, int src1, int src2, int dest) {
        vector<vector<pair<ll,ll>>>g(n),rg(n);
        for(int i=0;i<edges.size();i++){
            int u=edges[i][0],v=edges[i][1],w=edges[i][2];
            g[u].push_back({v,w});
            rg[v].push_back({u,w});
        }

        vector<ll>dis1,dis2,dis3;
        dis1=dij(g,src1);
        dis2=dij(g,src2);
        dis3=dij(rg,dest);
        ll ans=maxx;
        for(int i=0;i<n;i++){
            ans=min(ans,dis1[i]+dis2[i]+dis3[i]);
        }
        return ans==maxx?-1:ans;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值