机器学习/深度学习资源下载合集(持续更新...)

这篇文章转载自「译智社」的成员 —— 林夕的文章机器学习/深度学习资源下载集合(持续更新…)。如果你对人工智能感兴趣,欢迎关注公众号 —— 译智社。


从入门到进阶,所用到机器学习资料,包括书、视频、源码。文章首发于 Github,若下载资源请跳转 Github.

1. 视频:

1.1. 吴恩达老师机器学习课程:

1.2. 吴恩达 深度学习课程:

1.3. 斯坦福 CS231n: Convolutional Neural Networks for Visual Recognition:

1.4. fast.ai

1.5. 百度 PaddlePaddle 公开课:

http://ai.baidu.com/paddlepaddle/openCourses

  • 机器学习入门

  • 机器学习模型

  • 深度学习基础

1.6. 徐亦达老师机器学习课程:

1.7. 李宏毅深度学习课程:

1.8. 谷歌机器学习速成:

2. 书籍:

2.1. Keras:

2.2. TensorFlow:

2.3. NLP:

2.4. 机器学习:

2.5. 深度学习:

文末扫码,关注公众号 「译智社」 后台回复「ml」可以获得百度云链接!

3. 框架:

基础框架机器学习深度学习
pandassklearnKeras
imbalanced-learnLightGBMTensorFlow
xLearnXGBoostPyTorch
CatBoostPaddlePaddle

4. 机器学习博客

  • Open AI:
    由 Elon Musk 提出建立的一个人工智能非营利组织,定期发布有关自然语言处理,图像处理和语音处理等先进人工智能技术的研究。

  • Distill:
    编辑和策展团队由来自 Google Brain,DeepMind,Tesla 和其他着名组织的科学家组成。致力于清晰的解释机器学习。

  • BAIR 博客:
    加州大学伯克利分校的伯克利 AI 研究(BAIR)小组设立。BAIR 博客旨在传播 BAIR 在人工智能研究方面的研究成果,观点和最新情况。

  • DeepMind:
    DeepMind 的大名,我想很多人已经知道了。

  • Andrej Karpathy 的博客:原博客Medium
    特斯拉的人工智能总监,很多人也许看过他的博客,但是不知道这个人。现在他已经转战 Medium,很多文章发布在 Medium。

  • Colah 的博客:
    Christopher Olah 是 Google Brain 的研究科学家。旨在用简单的方式解读神经网络。

  • WildML:
    博主同样来自 Google Brain,写作的主要焦点是深度学习。

  • Ruder 的博客:
    博主是一位博士生,博客以深度学习和自然语言处理为主。

  • FAIR博客:
    FAIR 的大名就不多讲了,我想很多人知道,很多精彩论文出自 FAIR,博客讨论了人工智能,深度学习,机器学习,计算机视觉及其在 Facebook 自研产品上的实际应用。

  • Adit Deshpande 的博客:
    UCLA 的一名本科生(自愧不如啊),很多内容为初学者准备,由浅入深,层层递进。

  • inFERENCe的博客:
    剑桥的博士,与 Twitter Cortex 合作。他撰写了关于概率推理,生成模型,无监督学习。

  • Andrew Trask 的博客:
    非常推荐,博主是 DeepMind 的研究科学家和博士。简单列几篇他的博客:


如果你想了解更多关于人工智能的资讯,欢迎扫码关注微信公众号以及知乎专栏 「译智社」,我们为大家提供优质的人工智能文章、国外优质博客和论文等资讯哟!

25篇机器学习经典论文合集,有需要欢迎积分自取 Efficient sparse coding algorithms论文附有代码 [1] Zheng S, Kwok J T. Follow the moving leader in deep learning[C]//Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017: 4110-4119. [2] Kalai A, Vempala S. Efficient algorithms for online decision problems[J]. Journal of Computer and System Sciences, 2005, 71(3): 291-307. [3] Kingma, D. and Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference for Learning Representations, 2015. [4] Lee H, Battle A, Raina R, et al. Efficient sparse coding algorithms[C]//Advances in neural information processing systems. 2007: 801-808. [5] Fan J, Ding L, Chen Y, et al. Factor Group-Sparse Regularization for Efficient Low-Rank Matrix Recovery[J]. 2019. [6] Z. Lai, Y. Chen, J. Wu, W. W. Keung, and F. Shen, “Jointly sparse hashing for image retrieval,” IEEE Transactions on Image Processing, vol. 27, no. 12, pp. 6147–6158, 2018. [7] Z. Zhang, Y. Chen, and V. Saligrama, “Efficient training of very deep neural networks for supervised hashing,” in Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, 2016, pp. 1487–1495. [8] Wei-Shi Zheng, Shaogang Gong, Tao Xiang. Person re-identification by probabilistic relative distance comparison[C]// CVPR 2011. IEEE, 2011. [9] Liao S, Hu Y, Zhu X, et al. Person re-identification by local maximal occurrence representation and metric learning[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 2197-2206. [10] Liu X, Li H, Shao J, et al. Show, tell and discriminate: Image captioning by self-retrieval with partially labeled data[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 338-354. [11] Yao T, Pan Y, Li Y, et al. Exploring visual relationship for image captioning[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 684-699. [12] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang., ”Image Super-Resolution Using Deep Convolutional Networks, ” IEEE Transactions on Pattern Analysis and Machine Intelligence, Preprint, 2015. [13] M. D. Zeiler, D. Krishnan, Taylor, G. W., and R. Fergus, "Deconvolutional networks," in Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern Recog., 2010, pp. 2528-2535. [14] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 580-587. [15] Girshick R . Fast R-CNN[J]. Computer Science, 2015. [16] Joseph Redmon, Santosh Divvala, Ross Girshick, et al. You Only Look Once: Unified, Real-Time Object Detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016. [17] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [18] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. science, 2006, 313(5786): 504-507. [19] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105. [20] Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[C]//European conference on computer vision. Springer, Cham, 2014: 818-833. [21] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1-9. [22] Wu, Y., & He, K. (2018). Group normalization. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 3-19). [23] Goodfellow I,Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems. 2014: 2672-2680. [24] Tran, L., Yin, X., & Liu, X. (2017). Disentangled representation learning gan for pose-invariant face recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1415-1424). [25] Pu, Y., Gan, Z., Henao, R., Yuan, X., Li, C., Stevens, A., & Carin, L. (2016). Variational autoencoder for deep learning of images, labels and captions. In Advances in neural information processing systems (pp. 2352-2360).
深度学习工具包 Deprecation notice. ----- This toolbox is outdated and no longer maintained. There are much better tools available for deep learning than this toolbox, e.g. [Theano](http://deeplearning.net/software/theano/), [torch](http://torch.ch/) or [tensorflow](http://www.tensorflow.org/) I would suggest you use one of the tools mentioned above rather than use this toolbox. Best, Rasmus. DeepLearnToolbox ================ A Matlab toolbox for Deep Learning. Deep Learning is a new subfield of machine learning that focuses on learning deep hierarchical models of data. It is inspired by the human brain's apparent deep (layered, hierarchical) architecture. A good overview of the theory of Deep Learning theory is [Learning Deep Architectures for AI](http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf) For a more informal introduction, see the following videos by Geoffrey Hinton and Andrew Ng. * [The Next Generation of Neural Networks](http://www.youtube.com/watch?v=AyzOUbkUf3M) (Hinton, 2007) * [Recent Developments in Deep Learning](http://www.youtube.com/watch?v=VdIURAu1-aU) (Hinton, 2010) * [Unsupervised Feature Learning and Deep Learning](http://www.youtube.com/watch?v=ZmNOAtZIgIk) (Ng, 2011) If you use this toolbox in your research please cite [Prediction as a candidate for learning deep hierarchical models of data](http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6284) ``` @MASTERSTHESIS\{IMM2012-06284, author = "R. B. Palm", title = "Prediction as a candidate for learning deep hierarchical models of data", year = "2012", } ``` Contact: rasmusbergpalm at gmail dot com Directories included in the toolbox ----------------------------------- `NN/` - A library for Feedforward Backpropagation Neural Networks `CNN/` - A library for Convolutional Neural Networks `DBN/` - A library for Deep Belief Networks `SAE/` - A library for Stacked Auto-Encoders `CAE/` - A library for Convolutional Auto-Encoders `util/` - Utility functions used by the libraries `data/` - Data used by the examples `tests/` - unit tests to verify toolbox is working For references on each library check REFS.md Setup ----- 1. Download. 2. addpath(genpath('DeepLearnToolbox')); Example: Deep Belief Network --------------------- ```matlab function test_example_DBN load mnist_uint8; train_x = double(train_x) / 255; test_x = double(test_x) / 255; train_y = double(train_y); test_y = double(test_y); %% ex1 train a 100 hidden unit RBM and visualize its weights rand('state',0) dbn.sizes = [100]; opts.numepochs = 1; opts.batchsize = 100; opts.momentum = 0; opts.alpha = 1; dbn = dbnsetup(dbn, train_x, opts); dbn = dbntrain(dbn, train_x, opts); figure; visualize(dbn.rbm{1}.W'); % Visualize the RBM weights %% ex2 train a 100-100 hidden unit DBN and use its weights to initialize a NN rand('state',0) %train dbn dbn.sizes = [100 100]; opts.numepochs = 1; opts.batchsize = 100; opts.momentum = 0; opts.alpha = 1; dbn = dbnsetup(dbn, train_x, opts); dbn = dbntrain(dbn, train_x, opts); %unfold dbn to nn nn = dbnunfoldtonn(dbn, 10); nn.activation_function = 'sigm'; %train nn opts.numepochs = 1; opts.batchsize = 100; nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.10, 'Too big error'); ``` Example: Stacked Auto-Encoders --------------------- ```matlab function test_example_SAE load mnist_uint8; train_x = double(train_x)/255; test_x = double(test_x)/255; train_y = double(train_y); test_y = double(test_y); %% ex1 train a 100 hidden unit SDAE and use it to initialize a FFNN % Setup and train a stacked denoising autoencoder (SDAE) rand('state',0) sae = saesetup([784 100]); sae.ae{1}.activation_function = 'sigm'; sae.ae{1}.learningRate = 1; sae.ae{1}.inputZeroMaskedFraction = 0.5; opts.numepochs = 1; opts.batchsize = 100; sae = saetrain(sae, train_x, opts); visualize(sae.ae{1}.W{1}(:,2:end)') % Use the SDAE to initialize a FFNN nn = nnsetup([784 100 10]); nn.activation_function = 'sigm'; nn.learningRate = 1; nn.W{1} = sae.ae{1}.W{1}; % Train the FFNN opts.numepochs = 1; opts.batchsize = 100; nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.16, 'Too big error'); ``` Example: Convolutional Neural Nets --------------------- ```matlab function test_example_CNN load mnist_uint8; train_x = double(reshape(train_x',28,28,60000))/255; test_x = double(reshape(test_x',28,28,10000))/255; train_y = double(train_y'); test_y = double(test_y'); %% ex1 Train a 6c-2s-12c-2s Convolutional neural network %will run 1 epoch in about 200 second and get around 11% error. %With 100 epochs you'll get around 1.2% error rand('state',0) cnn.layers = { struct('type', 'i') %input layer struct('type', 'c', 'outputmaps', 6, 'kernelsize', 5) %convolution layer struct('type', 's', 'scale', 2) %sub sampling layer struct('type', 'c', 'outputmaps', 12, 'kernelsize', 5) %convolution layer struct('type', 's', 'scale', 2) %subsampling layer }; cnn = cnnsetup(cnn, train_x, train_y); opts.alpha = 1; opts.batchsize = 50; opts.numepochs = 1; cnn = cnntrain(cnn, train_x, train_y, opts); [er, bad] = cnntest(cnn, test_x, test_y); %plot mean squared error figure; plot(cnn.rL); assert(er<0.12, 'Too big error'); ``` Example: Neural Networks --------------------- ```matlab function test_example_NN load mnist_uint8; train_x = double(train_x) / 255; test_x = double(test_x) / 255; train_y = double(train_y); test_y = double(test_y); % normalize [train_x, mu, sigma] = zscore(train_x); test_x = normalize(test_x, mu, sigma); %% ex1 vanilla neural net rand('state',0) nn = nnsetup([784 100 10]); opts.numepochs = 1; % Number of full sweeps through data opts.batchsize = 100; % Take a mean gradient step over this many samples [nn, L] = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.08, 'Too big error'); %% ex2 neural net with L2 weight decay rand('state',0) nn = nnsetup([784 100 10]); nn.weightPenaltyL2 = 1e-4; % L2 weight decay opts.numepochs = 1; % Number of full sweeps through data opts.batchsize = 100; % Take a mean gradient step over this many samples nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, 'Too big error'); %% ex3 neural net with dropout rand('state',0) nn = nnsetup([784 100 10]); nn.dropoutFraction = 0.5; % Dropout fraction opts.numepochs = 1; % Number of full sweeps through data opts.batchsize = 100; % Take a mean gradient step over this many samples nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, 'Too big error'); %% ex4 neural net with sigmoid activation function rand('state',0) nn = nnsetup([784 100 10]); nn.activation_function = 'sigm'; % Sigmoid activation function nn.learningRate = 1; % Sigm require a lower learning rate opts.numepochs = 1; % Number of full sweeps through data opts.batchsize = 100; % Take a mean gradient step over this many samples nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, 'Too big error'); %% ex5 plotting functionality rand('state',0) nn = nnsetup([784 20 10]); opts.numepochs = 5; % Number of full sweeps through data nn.output = 'softmax'; % use softmax output opts.batchsize = 1000; % Take a mean gradient step over this many samples opts.plot = 1; % enable plotting nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, 'Too big error'); %% ex6 neural net with sigmoid activation and plotting of validation and training error % split training data into training and validation data vx = train_x(1:10000,:); tx = train_x(10001:end,:); vy = train_y(1:10000,:); ty = train_y(10001:end,:); rand('state',0) nn = nnsetup([784 20 10]); nn.output = 'softmax'; % use softmax output opts.numepochs = 5; % Number of full sweeps through data opts.batchsize = 1000; % Take a mean gradient step over this many samples opts.plot = 1; % enable plotting nn = nntrain(nn, tx, ty, opts, vx, vy); % nntrain takes validation set as last two arguments (optionally) [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, 'Too big error'); ``` [![Bitdeli Badge](https://d2weczhvl823v0.cloudfront.net/rasmusbergpalm/deeplearntoolbox/trend.png)](https://bitdeli.com/free "Bitdeli Badge")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值