使用 Matlab 解决数学建模问题

前言

如果你在使用 Matlab 来处理一些数学问题,希望这篇博客可以帮到你。你可以根据所需要的内容查看对应的标题的内容,可以知道在 Matlab 中使用什么函数来解决问题。

1. 优化问题

1.1. 线性规划函数:linprog()

1.1.1. 线性规划的标准形式

线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。

Matlab 中规定线性规划的标准形式为
min ⁡ x c T x s . t . { A x ≤ b A e q ⋅ x = b e q l b ≤ x ≤ u b \min_x c^Tx \\ s.t. \begin{cases} Ax \leq b \\ Aeq \cdot x = beq \\ lb \leq x \leq ub \\ \end{cases} xmincTxs.t.AxbAeqx=beqlbxub

第一个式子为目标函数, s . t . s.t. s.t. 式是约束条件。其中 c c c x x x n n n 维列向量, A A A A e q Aeq Aeq 为适当维数的矩阵, b b b b e q beq beq 为适当维数的列向量。

1.1.2. linprog() 的使用

在 matlab 中,线性规划的函数为 linprog() ,它有两种常用形式:X = linprog(f,A,b,Aeq,beq,LB,UB,X0)[X, FVAL] = linprog(f,A,b,Aeq,beq,LB,UB,X0)

返回的值 X 是向量 x x x 的值,FVAL 是目标函数的值,LB 和 UB 分别是变量 x x x 的下界和上界, x 0 x_0 x0 x x x 的初始值。

1.1.3. 应用例子

例子 1.

求下列线性规划问题:

max ⁡ z = 2 x 1 + 3 x 2 − 5 x 3 s . t . { x 1 + x 2 + x 3 = 7 2 x 1 − 5 x 2 + x 3 ≥ 10 x 1 + 3 x 2 + x 3 ≤ 12 x 1 , x 2 , x 3 ≥ 0 \max z = 2x_1+3x_2-5x_3 \\ s.t. \begin{cases} x_1+x_2+x_3=7 \\ 2x_1-5x_2+x_3 \ge 10 \\ x_1+3x_2+x_3 \leq 12 \\ x_1,x_2,x_3 \ge 0 \\ \end{cases} maxz=2x1+3x25x3s.t.x1+x2+x3=72x15x2+x310x1+3x2+x312x1,x2,x30

依据 Matlab 的标准,默认求解是求最小值,而本例是求的最大值,把 z z z 的系数变为相反数,即 − 1 -1 1 就好了,同理 下面的大于等于号 ≥ \ge 也做同样处理,就是把 10 → − 10 10 \to -10 1010,然后没有上界 UB,下界 LB 为三个变量都为 0 0 0 ,也就是一个全零的矩阵 zeros(3, 1)

编写一个 .m 文件:

c = [2; 3; -5];
a = [-2, 5, -1; 1, 3, 1];
b = [-10; 12];
aeq = [1, 1, 1];
beq = 7;
x = linprog(-c, a, b, aeq, beq, zeros(3, 1))
value = c'*x

执行后输出最优解和目标函数在最优解的取值:

x =

    6.4286
    0.5714
    0.0000


value =

   14.5714

1.2. 非线性规划函数:fmincon()

1.2.1. 非线性规划的标准形式

如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。

线性规划与非线性规划的区别:

线性规划的最优解只能在其可行域的边界上达到;而非线性规划的最优解则可能在可行域的任意一点达到。

1.2.2. fmincon() 的使用

Matlab 中非线性规划的数学模型的形式为:
min ⁡ f ( x ) s . t . { A x ≤ B A e q ⋅ x = B e q C ( x ) ≤ 0 C e q ( x ) = 0 \min f(x) \\ s.t. \begin{cases} Ax \leq B \\ Aeq \cdot x = Beq \\ C(x) \leq 0 \\ Ceq(x) = 0 \end{cases} minf(x)s.t.AxBAeqx=BeqC(x)0Ceq(x)=0
f ( x ) f(x) f(x) 是标量函数, A A A, B B B, A e q Aeq Aeq, B e q Beq Beq 是相应位数的矩阵和向量, C ( x ) C(x) C(x), C e q ( x ) Ceq(x) Ceq(x) 是非线性向量函数。

Matlab 中的函数是:X = fmincon(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS)

它的返回值是向量 x x x,其中 FUN 是用 M 文件定义的函数 f ( x ) f(x) f(x) ;X0 是 x x x 的初始值; A, B, Aeq, Beq 定义了线性约束 A ∗ X ≤ B A * X \leq B AXB, A e q ∗ X = B e q Aeq * X = Beq AeqX=Beq,如果没有线性约束,则 A=[], B=[], Aeq=[], Beq=[];LB 和 UB 是变量 x x x 的下界和上界,如果上界和下界没有约 束,则 LB=[],UB=[],如果 x x x 无下界,则 LB 的各分量都为 -inf,如果 x x x无上界,则 UB 的各分量都为 inf;NONLCON 是用 M 文件定义的非线性向量函数 C ( x ) C(x) C(x), C e q ( x ) Ceq(x) Ceq(x);OPTIONS 定义了优化参数,可以使用 Matlab 缺省的参数设置。

1.2.3. 应用例子

例子 1.

求下列非线性规划:
min ⁡ f ( x ) = x 1 2 + x 2 2 + x 3 2 + 8 s . t . x 1 2 − x 2 + x 3 2 ≥ 0 x 1 + x 2 2 + x 3 3 ≤ 20 − x 1 − x 2 2 + 2 = 0 x 2 + 2 x 3 2 = 3 x 1 , x 2 , x 3 ≥ 0 \min f(x)=x^2_1+x_2^2+x_3^2+8 \\ \begin{matrix} s.t. & x_1^2-x_2+x_3^2 \ge 0 \\ & x_1+x_2^2+x_3^3 \leq 20 \\ & -x_1-x_2^2+2=0 \\ & x_2+2x_3^2=3 \\ & x_1, x_2, x_3 \ge 0 \\ \end{matrix} minf(x)=x12+x22+x32+8s.t.x12x2+x320x1+x22+x3320x1x22+2=0x2+2x32=3x1,x2,x30
编写 M 文件 fun1.m, fun2.m, example2.m,内容分别为下:

%% content of fun1.m
function f=fun1(x);
f=sum(x.^2)+8; 

%% content of fun2.m
function [g,h]=fun2(x);
g=[-x(1)^2+x(2)-x(3)^2 x(1)+x(2)^2+x(3)^3-20];  %非线性不等式约束
h=[-x(1)-x(2)^2+2 x(2)+2*x(3)^2-3]; %非线性等式约束 

%% content of exemple.m
options=optimset('largescale','off'); 
[x,y]=fmincon('fun1',rand(3,1),[],[],[],[],zeros(3,1),[],'fun2', options)

运行的结果:

x =

    0.5522
    1.2033
    0.9478


y =

   10.6511

1.3. 整数规划:intlinprog()

1.3.1. 整数规划的标准形式

规划中的变量(部分或全部)限制为整数时,称为整数规划。若在线性规划模型中, 变量限制为整数,则称为整数线性规划。如不加特殊说明,一般指整数线性规划。

整数规划在 Matlab 上的标准形式是:
min ⁡ x   c T x s . t . { A x ≤ b A e q ⋅ x = b e q l b ≤ x ≤ u b \min_x \, c^Tx \\ s.t. \begin{cases} Ax \leq b \\ Aeq \cdot x = beq \\ lb \leq x \leq ub \\ \end{cases} xmincTxs.t.AxbAeqx=beqlbxub
与之前的线性规划一样,不同的是这里我们的 x x x 是取整数的。

1.3.2. intlinprog() 的使用

由于《数学建模算法与程序》这本书写得算是比较早,那个时候 Matlab 对于整数规划还没有函数,而唯一一个出现的 bintprog() 函数在如今的 Matlab 上也移除了,用了一个新的函数 intlinprog() 代替,也就是说,我们现在可以在 Matlab 上处理整数规划问题了。

先看看 intlinprog() 的用法解释:

X = intlinprog(f,intcon,A,b,Aeq,beq,LB,UB) 与上面一样,但是第二个参数 intcon 是指定要限定哪一个 x x x 为整数,如果想要限定 x 2 x_2 x2 x 10 x_{10} x10 为整数,那就是 [2,10]

1.3.3. 应用例子

这里我们使用 intlinprog() 解决书上的第一个整数规划(书上使用的是分支定界法,还是挺复杂的):

例子 1.

求解下述整数规划:
M a x   z = 10 x 1 + 90 x 2 { 9 x 1 + 7 x 2 ≤ 56 7 x 1 + 20 x 2 ≤ 70 x 1 , x 2 ≥ 0   ( x 1 , x 2 ∈ Z ) \mathrm{Max} \, z=10x_1+90x_2 \\ \begin{cases} 9x_1+7x_2 \leq 56 \\ 7x_1+20x_2 \leq 70 \\ x_1, x_2 \ge 0 \, (x_1,x_2 \in \boldsymbol{Z}) \end{cases} Maxz=10x1+90x29x1+7x2567x1+20x270x1,x20(x1,x2Z)
编写程序:

c=[40;90];
A=[9 7;7 20];
b=[56 70];
Aeq=[];
beq=[];
LB=[0;0];
UB=[inf;inf]
X=intlinprog(-c,[1,2],A,b,Aeq,beq,LB,UB)
value=f'*X

运行,解得:

X =

    4.0000
    2.0000


value =

   340
  • 23
    点赞
  • 92
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值