随机森林模型sklearn_Sklearn_随机森林

本文深入探讨了集成学习中的随机森林模型,包括其在市场营销、疾病风险预测等领域的应用。随机森林作为装袋法的代表,通过多个相互独立的决策树集成以提高模型的准确性和稳定性。在Sklearn中,随机森林的关键参数如`n_estimators`对模型性能的影响被详细解释,同时展示了如何使用随机森林进行模型训练和效果评估。此外,文章还讨论了`random_state`、`bootstrap`和`oob_score`参数的作用,以及随机森林与其他决策树模型的对比和协同效果。
摘要由CSDN通过智能技术生成

一.集成算法概述

集成学习(ensemble learning)是时下非常流行的机器学习算法,它本身不是一个单独的机器学习算法,而是通

过在数据上构建多个模型,集成所有模型的建模结果。基本上所有的机器学习领域都可以看到集成学习的身影,在

现实中集成学习也有相当大的作用,它可以用来做市场营销模拟的建模,统计客户来源,保留和流失,也可用来预

测疾病的风险和病患者的易感性。在现在的各种算法竞赛中,随机森林,梯度提升树(GBDT),Xgboost等集成

算法的身影也随处可见,可见其效果之好,应用之广。

集成算法的目标 :

集成算法会考虑多个评估器的建模结果,汇总之后得到一个综合的结果,以此来获取比单个模型更好的回归或

分类表现

集成评估器

多个模型集成成为的模型叫做集成评估器(ensemble estimator),组成集成评估器的每个模型都叫做基评估器

(base estimator)。通常来说,有三类集成算法:装袋法(Bagging),提升法(Boosting)和stacking。

装袋法的核心思想是构建多个相互独立的评估器,然后对其预测进行平均或多数表决原则来决定集成评估器的结

果。装袋法的代表模型就是随机森林。

提升法中,基评估器是相关的,是按顺序一一构建的。其核心思想是结合弱评估器的力量一次次对难以评估的样本

进行预测,从而构成一个强评估器。提升法的代表模型有Adaboost和梯度提升树。

二.RandomForestClassifier---随机森林分类器

2.1重要参数

2.1.1控制基评估器的参数

2.1.2 n_estimators

这是森林中树木的数量,即基评估器的数量。这个参数对随机森林模型的精确性影响是单调的,n_estimators越

大,模型的效果往往越好。但是相应的,任何模型都有决策边界,n_estimators达到一定的程度之后,随机森林的

精确性往往不在上升或开始波动,并且,n_estimators越大,需要的计算量和内存也越大,训练的时间也会越来越

长。对于这个参数,我们是渴望在训练难度和模型效果之间取得平衡。

n_estimators的默认值在现有版本的sklearn中是10,但是在即将更新的0.22版本中,这个默认值会被修正为

100。这个修正显示出了使用者的调参倾向:要更大的n_estimators

创建一片随机森林

1.导入包

%matplotlib inlinefromsklearn.tree import DecisionTreeClassifierfromsklearn.ensemble import RandomForestClassifierfrom sklearn.datasets import load_wine

2.导入红酒数据集

wine =load_wine()

wine.data

wine.target

3.sklearn建模的基本流程

fromsklearn.model_selection import train_test_split

Xtrain, Xtest, Ytrain, Ytest= train_test_split(wine.data,wine.target,test_size=0.3)

clf= DecisionTreeClassifier(random_state=0)

rfc= RandomForestClassifier(random_state=0)

clf=clf.fit(Xtrain,Ytrain)

rfc=rfc.fit(Xtrain,Ytrain)

score_c=clf.score(Xtest,Ytest)

score_r=rfc.score(Xtest,Ytest)

print("Single Tree:{}".format(score_c)

,"Random Forest:{}".format(score_r)

)

4. 画出随机森林和决策树在一组交叉验证下的效果对比

fromsklearn.model_selection import cross_val_score

import matplotlib.pyplotasplt

rfc= RandomForestClassifier(n_estimators=25)

rfc_s= cross_val_score(rfc,wine.data,wine.target,cv=10)

clf=DecisionTreeClassifier()

clf_s= cross_val_score(clf,wine.data,wine.target,cv=10)

plt.plot(range(1,11),rfc_s,label = "RandomForest")

plt.plot(range(1,11),clf_s,label = "Decision Tree")

plt.legend()

plt.show()

5. 画出随机森林和决策树在十组交叉验证下的效果对比

rfc_l =[]

clf_l=[]for i in range(10):

rfc= RandomForestClassifier(n_estimators=25)

rfc_s= cross_val_score(rfc,wine.data,wine.target,cv=10).mean()

rfc_l.append(rfc_s)

clf=DecisionTreeClassifier()

clf_s= cross_val_score(clf,wine.data,wine.target,cv=10).mean()

clf_l.append(clf_s)

plt.plot(range(1,11),rfc_l,label = "Random Forest")

plt.plot(range(1,11),clf_l,label = "Decision Tree")

plt.legend()

plt.show()

#是否有注意到,单个决策树的波动轨迹和随机森林一致?

#再次验证了我们之前提到的,单个决策树的准确率越高,随机森林的准确率也会越高

6. n_estimators的学习曲线

#####【TIME WARNING: 2mins 30seconds】#####

superpa=[]for i in range(200):

rfc= RandomForestClassifier(n_estimators=i+1,n_jobs=-1)

rfc_s= cross_val_score(rfc,wine.data,wine.target,cv=10).mean()

superpa.append(rfc_s)

print(max(superpa),superpa.index(max(superpa)))

plt.figure(figsize=[20,5])

plt.plot(range(1,201),superpa)

plt.show()

2.1.3 random_state

随机森林中其实也有random_state,用法和分类树中相似,只不过在分类树中,一个random_state只控制生成一

棵树,而随机森林中的random_state控制的是生成森林的模式,而非让一个森林中只有一棵树。

estimators属性:查看森林中树的状况

当random_state固定时,随机森林中生成是一组固定的树,但每棵树依然是不一致的,这是

用”随机挑选特征进行分枝“的方法得到的随机性。并且我们可以证明,当这种随机性越大的时候,袋装法的效果一

般会越来越好。用袋装法集成时,基分类器应当是相互独立的,是不相同的。

但这种做法的局限性是很强的,当我们需要成千上万棵树的时候,数据不一定能够提供成千上万的特征来让我们构

筑尽量多尽量不同的树。因此,除了random_state。我们还需要其他的随机性。

2.1.4 bootstrap & oob_score

要让基分类器尽量都不一样,一种很容易理解的方法是使用不同的训练集来进行训练,而袋装法正是通过有放回的

随机抽样技术来形成不同的训练数据,bootstrap就是用来控制抽样技术的参数。

在一个含有n个样本的原始训练集中,我们进行随机采样,每次采样一个样本,并在抽取下一个样本之前将该样本

放回原始训练集,也就是说下次采样时这个样本依然可能被采集到,这样采集n次,最终得到一个和原始训练集一

样大的,n个样本组成的自助集。由于是随机采样,这样每次的自助集和原始数据集不同,和其他的采样集也是不

同的。这样我们就可以自由创造取之不尽用之不竭,并且互不相同的自助集,用这些自助集来训练我们的基分类

器,我们的基分类器自然也就各不相同了。

bootstrap参数默认True,代表采用这种有放回的随机抽样技术。通常,这个参数不会被我们设置为False。

然而有放回抽样也会有自己的问题。由于是有放回,一些样本可能在同一个自助集中出现多次,而其他一些却可能

被忽略,一般来说,自助集大约平均会包含63%的原始数据因此,会有约37%的训练数据被浪费掉,没有参与建模,

这些数据被称为袋外数据(out of bag data,简写为oob)。除了我们最开始就划分好的测试集之外,这些数据也可

以被用来作为集成算法的测试集。也就是说,在使用随机森林时,我们可以不划分测试集和训练集,只需要用袋外

数据来测试我们的模型即可。当然,这也不是绝对的,当n和n_estimators都不够大的时候,很可能就没有数据掉

落在袋外,自然也就无法使用oob数据来测试模型了。

如果希望用袋外数据来测试,则需要在实例化时就将oob_score这个参数调整为True,训练完毕之后,我们可以用

随机森林的另一个重要属性:oob_score_来查看我们的在袋外数据上测试的结果:

#无需划分训练集和测试集

rfc= RandomForestClassifier(n_estimators=25,oob_score=True)

rfc=rfc.fit(wine.data,wine.target)

#重要属性oob_score_

rfc.oob_score_

2.2 重要属性和接口

决策树的参数,并通过n_estimators,

random_state,boostrap和oob_score这四个参数帮助大家了解了袋装法的基本流程和重要概念。同时,我们还

介绍了.estimators_ 和 .oob_score_ 这两个重要属性。除了这两个属性之外,作为树模型的集成算法,随机森林

自然也有.feature_importances_这个属性。

随机森林的接口与决策树完全一致,因此依然有四个常用接口:apply, fit, predict和score。除此之外,还需要注

意随机森林的predict_proba接口,这个接口返回每个测试样本对应的被分到每一类标签的概率,标签有几个分类

就返回几个概率。如果是二分类问题,则predict_proba返回的数值大于0.5的,被分为1,小于0.5的,被分为0。

传统的随机森林是利用袋装法中的规则,平均或少数服从多数来决定集成的结果,而sklearn中的随机森林是平均

每个样本对应的predict_proba返回的概率,得到一个平均概率,从而决定测试样本的分类

#大家可以分别取尝试一下这些属性和接口

rfc= RandomForestClassifier(n_estimators=25)

rfc=rfc.fit(Xtrain, Ytrain)

rfc.score(Xtest,Ytest)

rfc.feature_importances_

rfc.apply(Xtest)

rfc.predict(Xtest)

rfc.predict_proba(Xtest)

三.RandomForestRegressor

所有的参数,属性与接口,全部和随机森林分类器一致。仅有的不同就是回归树与分类树的不同,不纯度的指标,

参数Criterion不一致。

3.1 重要参数,属性与接口

criterion

回归树衡量分枝质量的指标,支持的标准有三种:

1)输入"mse"使用均方误差mean squared error(MSE),父节点和叶子节点之间的均方误差的差额将被用来作为

特征选择的标准,这种方法通过使用叶子节点的均值来最小化L2损失

2)输入“friedman_mse”使用费尔德曼均方误差,这种指标使用弗里德曼针对潜在分枝中的问题改进后的均方误差

3)输入"mae"使用绝对平均误差MAE(mean absolute error)。

在回归树中,MSE不只是我们的分枝质量衡量指标,也是我们最常用的衡

量回归树回归质量的指标,当我们在使用交叉验证,或者其他方式获取回归树的结果时,我们往往选择均方误差作

为我们的评估(在分类树中这个指标是score代表的预测准确率)。在回归中,我们追求的是,MSE越小越好。

然而,回归树的接口score返回的是R平方,并不是MSE。

R平方可以为正为负(如果模型的残差平方和远远大于

模型的总平方和,模型非常糟糕,R平方就会为负),而均方误差永远为正。

值得一提的是,虽然均方误差永远为正,但是sklearn当中使用均方误差作为评判标准时,却是计算”负均方误

差“(neg_mean_squared_error)。这是因为sklearn在计算模型评估指标的时候,会考虑指标本身的性质,均

方误差本身是一种误差,所以被sklearn划分为模型的一种损失(loss),

因此在sklearn当中,都以负数表示。真正的

均方误差MSE的数值,其实就是neg_mean_squared_error去掉负号的数字。

重要属性和接口

最重要的属性和接口,都与随机森林的分类器相一致,还是apply, fit, predict和score最为核心。值得一提的是,随

机森林回归并没有predict_proba这个接口,因为对于回归来说,并不存在一个样本要被分到某个类别的概率问

题,因此没有predict_proba这个接口。

随机森林回归用法

和决策树完全一致,除了多了参数n_estimators

fromsklearn.datasets import load_bostonfromsklearn.model_selection import cross_val_scorefromsklearn.ensemble import RandomForestRegressor

boston=load_boston()

regressor= RandomForestRegressor(n_estimators=100,random_state=0)

cross_val_score(regressor, boston.data, boston.target, cv=10,scoring= "neg_mean_squared_error")

sorted(sklearn.metrics.SCORERS.keys())

返回十次交叉验证的结果,注意在这里,如果不填写scoring = "neg_mean_squared_error",交叉验证默认的模型

衡量指标是R平方,因此交叉验证的结果可能有正也可能有负。而如果写上scoring,则衡量标准是负MSE,交叉验

证的结果只可能为负

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值