python打印tensor_Tensor及其基本操作:tensor.item(),torch.sum()

Tensor及其基本操作完整版链接

https://zhuanlan.zhihu.com/p/36233589

Use tensor.item() to convert a 0-dim tensor to a Python number

输出:

torch.sum()                       #返回总和

torch.mean()                      #返回平均值

torch.unique(input, sorted=False)   #返回唯一的数值,每个数值返回一次.

>>> output = torch.unique(torch.tensor([1, 3, 2, 3], dtype=torch.long))

>>> output

tensor([ 2,  3,  1])

y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])

y = torch.LongTensor([0, 2])

print(y_hat.gather(1, y.view(-1, 1)))

# 定义损失函数 (交叉熵损失函数有一个负号)

def cross_entropy(y_hat, y):

return - torch.log(y_hat.gather(1, y.view(-1, 1)))

print(cross_entropy(y_hat, y))

a = cross_entropy(y_hat, y)

print(a.sum())

print(a.sum().item())

输出

tensor([[0.1000],

[0.5000]])

tensor([[2.3026],

[0.6931]])

tensor(2.9957)

2.995732307434082

y = torch.LongTensor([0, 2])

print(y.shape)

print(y.shape[0])

输出

torch.Size([2])

2

y是一个一维向量,y.shape[0] 得到的是这个一维向量中元素的个数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值