matlab 已知离散时间lti系统的单位脉冲响应 求h(z),信号与系统习题答案(7-10)...

7.22 信号y (t ) 由两个均为带限的信号x 1(t ) 和x 2(t ) 卷积而成,即

y (t ) =x 1(t ) *x 2(t ) 其中

X 1(j ω) =0 , ω>1000πX 2(j ω) =0 , ω>2000π

现对y (t ) 作冲激串采样,以得到

y p (t ) =∑y (nT ) δ(t -nT )

-∞+∞

请给出y (t ) 保证能从y p (t ) 中恢复出来的采样周期T 的范围。

解:根据傅立叶变换性质,可得

Y (j ω) =X 1(j ω) X 2(j ω) 因此,有

当ω>1000π时,Y (j ω) =0

即y (t ) 的最高频率为1000π,所以y (t ) 的奈奎施特率为2⨯1000π=2000π,因此最大采样周期T =

=10-3(s ) ,所以当T

y p (t ) 中恢复出来。

7.27如图7.27(a )一采样系统,x (t ) 是实信号,且其频谱函数为X (j ω) ,如图7.27(b )。频率ω0选为ω0=

1

(ω1+ω2),低通滤波器H (j ω)的截至频率为2

ωc =

1

(ω2-ω1)。 2

1. 画出输出x 2(t )的频谱X 2(j ω);

2. 确定最大采样周期T ,以使得x (t )可以从x p

(t )恢复;

图7.27(a )

图7.27(b) 解:

1、x (t ) 经复指数调制后的x 1(t ) =x (t ) e

-j ω0t

,其傅立叶变换为

X 1(j ω) =X (j (ω+ω0)) 如图(a )所示。

1(j ω)

1

2(j ω

) 1

1221

22

1221

22

图(a ) 图(b ) 经低通滤波器H (j ω) 的输出x 2(t ) 的频谱X 2(j ω) 如图(b )所示。 2、由图(b )可见,X 2(j ω) 的带宽为ω2-ω1 ,所以最大采样周期为 T m a x =

ω2-ω1

8.3设x (t )是一实值信号,并有X (j ω)=0,ω>2000π,现进行幅度调制以产生信号g (t )=x (t )sin (2000πt ),图4-1给出一种解调方法,其中g (t )是输入,y (t )是输出,理想低通滤波器截止频率为2000π,通带增益为2,试确定y (t )。

g (t y (t )

cos (2000πt )

图4-1

解:w (t ) =g (t )cos(2000π) =x (t )sin (2000πt )cos(2000π) =

对 w (t ) 进行傅立叶变换 W (j ω) =

11X (j (ω-4000π) )-X (j (ω+4000π) ) 4j 4j

1

x (t )sin (4000πt ) 2

因为X (j ω)=0, ω>2000π

很明显,W (j ω) =0, ω≤2000π,所以w (t ) 通过截止频率为2000π的理想低通滤波器后的输出y (t ) =0。 9.17

解:系统可以看作是由H 1(s )和H 2(s ) 的并联构成

H 1(s )=H 2(s )=

s 2

=

1+s ) s +8s 1

=

1+s ) s +2

3s +12

2

s +10s +16

H (s )=H 1(s )+H 2(s )=

H (s )=

Y (s ) 3s +12

=2 X (s ) s +10s +16

Y (s )(s 2+10s +16) =X (s )(3s +12) 求上式反变换,有

d 2y (t ) dy (t ) dx (t )

+10+16y (t ) =12x (t ) +3 dt dt dt

9.28考虑一LTI 系统,其系统函数H (s )的零极点图如图9.28所示。 1. 指出与该零极点图有关的所有可能的收敛域ROC 。

2. 对于1中所标定的每个ROC ,给出有关的系统是否是稳定和/或因果的。

Im

图9.28

解:1. 可能的收敛域ROC 为: (1)Re{s }

(2)-21

2. (1)Re{s }

(3)-11,不稳定和因果的。

9.31有一连续时间LTI 系统,其输入x (t )和输出y (t )由下列微分方程所关联:

d 2y (t ) dy (t )

--2y (t ) =x (t ) 2

dt dt

设X (s )和Y (s )分别是x (t )和y (t )的拉普拉斯变换,H (s )是系统单位冲激响应h (t )的拉普拉斯变换。

1. 求H (s ),画出H (s )的零极点图。 2. 对下列每一种情况求h (t ):

(1)系统是稳定的。(2)系统是因果的。(3)系统既不稳定又不是因果的。

解:

1、对给出的微分方程两边作拉普拉斯变换,得

s 2Y (s )-sY (s )-2Y (s )=X (s ) 所以得 H (s )=

Y (s ) 11

=2=

X (s ) s -s -2(s -2)(s +1)

s )

其零—极点图如图(a )所示。 图(a ) 2、H (s )=

Y (s ) 111111

=2==-

X (s ) s -s -2(s -2)(s +1) 3s -23s +1

(1)当系统是稳定时,其收敛域为-1

11

h (t )=-e 2t u (-t ) -e -t u (t )

33

(2)当系统是稳定时,其收敛域为ℜ{s }>2,所以有

11

h (t )=e 2t u (t ) -e -t u (t )

33

(3)当系统是非因果的和不稳定的时,其收敛域为ℜ{s }

11

h (t )=-e 2t u (-t ) +e -t u (-t )

3310.18

解:(a )

1-6z -1+8z -2H (Z )=(此为直接型Ⅱ结构,详见第二章课件分析)

2-11-21-z +z 39Y (Z ) 1-6z -1+8z -2

=由H (Z )=得

X (Z ) 1-z -1+z -239

2-11-2

z +z ) =X (Z )(1-6z -1+8z -2) 39

求上式Z 反变换,得

21

y [n ]-y [n -1]+y [n -2]=x [n ]-6x [n -1]+8x [n -2]

39(b )

1

系统有一个二阶极点z =,由于系统是因果的,所以收敛域为

3Y (Z )(1-

z >

1

,包括单位圆,故系统是稳定的 3

10.28已知序列x

[n ]=δ[n ]-0.95δ[n -6]

a. 求该序列的z 变换X (z ) 。 b. 画出X (z ) 零极点图。

c. 利用考虑极点向量和零点向量沿单位圆横穿一周时的特性,近似画出x [n ]傅里叶变换的模特性。 解: a 、x

[n ]的z 变换为

z -0.95

,|z |>0 6z

6

X (z ) =1-0.95z -6=

b 、由X (z ) 可知,在z =0 处有一6阶极点, 其零点为

-j k π3

z k =(0.95)1/6e

5 ,k =0,1,2

其零—极点图如图(a )所示

图(a ) c 、傅氏变换的幅值近似图如图(b )所示。

X (e j ω)

ω

图(b )

10.34(P583)有一个因果LTI 系统,其差分方程为

y [n ]=y [n -1]+y [n -2]+x [n -1]

1. 求该系统的系统函数,画出H (z )的零极点图,指出收敛域。

2. 求系统的单位脉冲响应。

3. 判断该系统是不是稳定的?如果是不稳定的,试求一个满足该差分方程的稳定(非因果)单位脉冲响应。 解:

1、1、对所给的差分方程两边进行z 变换,得

Y (z ) =z -1Y (z ) +z -2Y +z -1X (z )

所以得

Y (z ) z -1z 1H (z ) ==-1-2=

,|z |>

X (z ) 1-z -z (z -α1)(z -α2) 2

11+=-0.62 α==1.62

,α2=其中,1

22

系统函数H (z ) 的零点为z =0 ,极点为z =α1 和z =α2 系统的零极点图如图(a

图(a )

2

、因为

H (z ) =

z

=

(z -α1)(z -α2)

22

n

n

所以

⎛1+⎫⎛1-⎫u [n ]-u [n ] ⎪⎪ h [

n ]= ⎪⎪⎝2⎭2⎭

13、系统是不稳定的,因为系统的收敛域为|z |>,不包括单位圆。若要使系

2

此时有

11

n

⎛1+⎫⎛1-⎫

h [n ]=u [-n -1]-u [n ] ⎪⎪⎪⎪2⎭2⎭

10.59一个数字滤波器的结构如图10.59所示 x [n ]

n

y [n ]

a. 求这个因果滤波器的H (z ),画出零极点图,并指出收敛域。 b. 当k 为何值时,该系统是稳定的。

⎛2⎫x [n ]=c. 如果k =1

且对所有的n , ⎪,确定y [n ]。

⎝3⎭

解:a. 由图(1)得

x [n ]

n

y [n ]

图(1)

Y (z ) =W 1(z ) +W 2(z )

W 1(z ) =X (z ) -所以 1+而

k -1

z W 1(z ) 3

⎛⎝k -1⎫

z ⎪W 1(z ) =X (z ) 3⎭

W 2(z ) =-

k -1

z W 1(z ) 4

k -1

z X (z )

X (z )

-得 Y (z ) =W 1(z ) +W 2(z ) = k -1k -11+z 1+z 33k -1z

Y (z ) k H (z ) ==-, z >

k -1X (z ) 31+z 3

1-

(a ) (b ) 图(2)

b .只有k

⎛2⎫

c. 由于x [n ]= ⎪是LTI 系统的特征函数,所以输出

⎝3⎭

n

y [n ]=H (z ) |

z =

23

⎛2⎫∙ ⎪⎝3⎭

n

k =1时,代入得

1-11-z y [n ]=|2

1-1z =3

1+z 3

5⎛2⎫⎛2⎫

∙ ⎪= ⎪⎝3⎭12⎝3⎭

n n

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值