cholesky分解_[数值计算] QR分解

0. 为什么要用QR分解

的问题可以分成3类:
  • 情况1:A是方阵,m=n
  • 情况2:A是over-determined的,m>n
  • 情况3:A是under-determined的,m<n

在[数值计算] 条件数的例子2里,遇到的情况1(A是方阵),通过构造拉格朗日插值来使得对A求逆足够稳定。对于一般的情况下,解决思路是使用LU(LUP)分解来解决稳定性问题,在前一篇文中已经简介过了[数值计算] LU分解、LUP分解、Cholesky分解。

对于后两种情况, [数值计算] 数据拟合——线性最小二乘法 分析了用正规方程组求解over-determined以及under-determined的问题。但在文中也提到了,对于over-determined的线性最小二乘问题,正规方程组是不稳定的,通常需要用QR分解来处理

理论很美好,在小数据量的时候没问题,然而直接使用正规方程组求解会在数据量大(e.g. data size > 100)的时候不稳定numerically unstable。原因是 需要对
求逆,而A我们都知道是Vandermonde矩阵的一部分,本身就是poorly conditioned,而
只会更糟糕。解决的方法是使用
QR分解,这也是Python MATLAB求解 线性最小二乘 问题的方法。

1. QR分解

1.1 定义

一个矩阵

可以被分解成
,其中:
  • 是正交矩阵
  • 是上三角矩阵

1.2 正交矩阵的性质

  • 左乘一个正交矩阵对欧式范数的结果不影响(在下面证明eq.2的时候会用到)

1.3 从QR分解角度看线性最小二乘

对于一个over-determined线性最小二乘问题

,其目标函数是

这里

如果把

拆分成上下两部分,形式
类似,
。那么目标函数可以写成下面的形式:

可以看到,我们只能最小化前一部分

到0,即
的最小值为
。这样处理之后就避免了求正规方程组中的
,避免了条件数变成
,所以QR分解法更加数值稳定。

1.4 计算QR分解的方法

一共有三种:

  • Gram–Schmidt Orthogonalization
  • Householder Triangularization
  • Givens Rotations

1.5 Gram–Schmidt Orthogonalization

1.5.1 Reduced QR分解

GSO构建正交矩阵

的方法是从A矩阵的n个列(
)中构建互相正交的基,先选定
为第一个基,然后把第二列
减去平行于
的部分,剩下的垂直于
的部分作为下一个基,以此类推,直到生成了n个基。

这个方法生成的

,和section1.1中定义的Q是方阵,R不是方阵有区别。这个结果被称为Reduced QR分解,因为m>n,所以只满足
,而不满足

b19bfb7bbf425fc6f3a1521a55e85407.png
Credit to http://iacs-courses.seas.harvard.edu/courses/am205/schedule/

Reduced QR分解同样可以求解over-determined线性最小二乘问题。形式类似Full QR分解:

其中

1.5.2 Full QR分解

为了实现定义中的完整的QR分解,需要把上面生成Q中的n个基拓展成m个互相正交的基。但此处并没有对额外的m-n个基的顺序有特殊要求,因此任意一种顺序都可以。另外还需要把

下面加m-n行零矩阵。

在Python中,Reduced QR分解和Full QR分解对应于

q

1.5.3 Classic Gram–Schmidt Orthogonalization算法 CGSO

观察Eq.4可以发现,其实每一步迭代都只有一个

未知:左边
已知,右边
已知, q的系数们
可以用公式
求得。把
代入Eq.4,并整理可得

因此

。其中,
的符号不确定是因为,任意一个基方向反向之后,这个QR分解不会有任何问题,这个基仍然和其他基正交。为了计算方便,这里就规定

整理上面计算

的过程为算法的形式:

c470e4483aac86a7e109743f540eea2e.png
Credit to http://iacs-courses.seas.harvard.edu/courses/am205/schedule/

观察算法过程,可以发现,唯一可能在理论上出问题的情况就是,出现某个

=0,导致在算法第8行出现0在分母上的情况。因此只要
是满秩的,且每个
都>0,那么reduced QR分解的结果是唯一的。

1.5.4 Modified Gram–Schmidt Orthogonalization算法 MGSO

由于CGSO对舍入误差很敏感,容易导致生成的基

的正交性随着迭代越来越弱,因此引入改进的GSO。核心思想是,在每个
生成后,直接把A剩下的列(下面算法第7行)都去掉
的成分(下面算法的第8-9行)。因为只是把计算的顺序变了,所以理论上计算结果是一样的。

9d47b7cb6718b467c8c2d9dd1e251551.png
Credit to http://iacs-courses.seas.harvard.edu/courses/am205/schedule/

但是改进之后稳定性会好很多。从实际计算步骤上来看,CGSO和MGSO的区别在于,CGSO中,每次迭代新的一列

,计算每个
都是用的同一个
,而MGSO计算
的时候用的
是已经减去前面j-1个基的分量之后的

这样做的好处是:误差的传递是局部的。比如计算

是精确的,计算
出现误差,即,
上存在一个微小分量。按照CGSO,接下来要分别计算
的分量,最终
;而MGSO则先计算
上的分量,去除掉这个分量之后成为
,再计算并去除
上的分量得到最终的
,此时如果计算是精确的,那么至少可以保证

直观理解参考下面这张图,在三维xyz坐标系里,

是带误差的
。用CGSO处理
的时候,
用的是初始值
,包含了
两个方向的误差,而用MGSO处理
的时候,
用的是去掉
分量之后的
,只有
方向的误差。

bf17da9d431ff444a932c5d8c220ba77.png

公式上计算这些误差参考The modified Gram-Schmidt procedure:

661d1412edfb8be7be0eb9e526449751.png
Credit to https://www.math.uci.edu/~ttrogdon/105A/html/Lecture23.html

1.6 Givens Rotations

1.6.1 Givens Rotation Matrix

1.6.2 Givens Rotations的作用

对于一个矩阵

,对于第i列的第j和k行
,如果
元素不为0,可以通过一个Givens Rotation把它转换成0。

或者
很小或者很大,且它们的平方不是用float表示的时候,对它们求平方会导致上溢出或者下溢出。因此更好的公式是:
  • 如果
    ,那么设

  • 如果
    ,那么设

不过这个问题基本只有在设计package造轮子的时候才会遇到,所以通常用Eq.10不会引起问题。详见Scientific Computing - Heath的第128页。

另外,在涉及反三角的数值运算的时候,建议使用atan2替代atan,范围更大,更稳定。例如atan2(y,x)会返回一个(x,y)向量和正x轴的夹角。

the difference between atan and atan2 in C++?​stackoverflow.com
95206768b56f3390dd80b4e63d790c50.png
wikipedia Atan2​en.wikipedia.org

1.6.3 Givens Rotations 算法

对于一个稠密的矩阵

,逐渐把A消元成R(参考1.5.1的full QR的图)。

91d58a21cd9c7aafb86f6a042cad8550.png
Credit to http://iacs-courses.seas.harvard.edu/courses/am205/schedule/

注意第三行的循环,j是从大到小的迭代。

1.6.4 Givens Rotations 优势

当A是稠密矩阵,Givens Rotations并没有比另外两种算法更高效,但如果A是稀疏矩阵,那么Givens Rotations大小为0的元素可以直接被忽略。另一个优势是,Givens Rotations更容易并行化,因为Givens Rotations只对两个元素进行操作,处理不同列的时候可以完全的独立。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值