一、安装scrapy
1.1linux系统使用:pip install scrapy
1.2Windows系统:pip install wheel
下载twisted http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted (根据Python的版本进行下载,这里我的Python版本是3.7所以就下的3.7)pip install 路径\Twisted-19.2.1-cp37-cp37m-win_amd64
pip install pywin32
pip install scrapy
环境:Windows 7 x64 Python3.7.1 pycharm
二、创建scrapy项目
1、新建一个项目,选择Python即可。我这里创建的项目名是demo。创建好后是一个空的项目。
2、点击pycharm下面的terminal,如下图所示:
在终端中输入:scrapy startproject demo 命令,创建scrapy项目,创建成功后会出现如下目录结构:
各文件作用大致如下:
scrapy.cfg::项目的配置文件
demo/:该项目的python模块。在此加入代码。
demo/items.py:项目中的item文件主要用于定义数据的结构化存储,类似于ORM中的models。
demo/pipelines.py:项目中的pipelines文件,指定数据的存储方式(以文件的形式存储,存储到数据库中)。
demo/settings.py:项目的设置文件.
demo/spiders/:放置spider代码的目录。我们写的爬虫代码在这个目录下。
3、创建爬虫文件
3.1在终端中输入:cd demo(我这里输入demo是因为我的项目名是demo)
3.2在终端中输入:scrapy genspider books books.toscrape.com (scrapy genspider 应用名称 爬取网页的起始url)
4、打开books文件,该文件结构如下:
5、爬取http://books.toscrape.com/的书籍信息。
5.1分析http://books.toscrape.com/页面。
由上图我们可以知道所有书籍都存放在div/ol/下的li标签中。这里我们只打印书名,由此我们可以像下面这样写来提取数据。
5.2books中的部分代码如下:def parse(self, response):
'''
数据解析,提取。
:param response: 爬取到的response对象
:return:
'''
book_list = response.xpath('/html/body/div/div/div/div/section/div[2]/ol/li')
for book in book_list:
print(book.xpath('./article/div[1]/a/img/@alt').extract())
5.3在setting.py中配置如下:USER_AGENT = 'Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:67.0) Gecko/20100101 Firefox/67.0' # UA头
ROBOTSTXT_OBEY = False # 如果为True表示准信robots协议,则大多数数据都爬不了。所以这里设置为Flase
LOG_LEVEL = 'ERROR' # 日志等级
5.4在终端中执行爬取命令:scrapy crawl books
打印内容如下['A Light in the Attic']
['Tipping the Velvet']
['Soumission']
['Sharp Objects']
['Sapiens: A Brief History of Humankind']
['The Requiem Red']
['The Dirty Little Secrets of Getting Your Dream Job']
['The Coming Woman: A Novel Based on the Life of the Infamous Feminist, Victoria Woodhull']
['The Boys in the Boat: Nine Americans and Their Epic Quest for Gold at the 1936 Berlin Olympics']
['The Black Maria']
['Starving Hearts (Triangular Trade Trilogy, #1)']
["Shakespeare's Sonnets"]
['Set Me Free']
["Scott Pilgrim's Precious Little Life (Scott Pilgrim #1)"]
['Rip it Up and Start Again']
['Our Band Could Be Your Life: Scenes from the American Indie Underground, 1981-1991']
['Olio']
['Mesaerion: The Best Science Fiction Stories 1800-1849']
['Libertarianism for Beginners']
["It's Only the Himalayas"]
由此我们可以看出这里只是爬取了1页,下面来爬取所有书籍名称。
6、爬取所有页面的书籍。
最终books.py的内容看起来像下面这样:# -*- coding: utf-8 -*-
import scrapy
class BooksSpider(scrapy.Spider):
name = 'books' # 爬虫的唯一标识
allowed_domains = ['books.toscrape.com']
# 要爬取的起点,可以是多个。
start_urls = ['http://books.toscrape.com/']
url = 'http://books.toscrape.com/catalogue/page-%d.html' # url模板用于拼接新的url
page_num = 2
def parse(self, response):
'''
数据解析,提取。
:param response: 爬取到的response对象
:return:
'''
print(f'当前页数{self.page_num}') # 打印当前页数的数据
book_list = response.xpath('/html/body/div/div/div/div/section/div[2]/ol/li')
for book in book_list:
print(book.xpath('./article/div[1]/a/img/@alt').extract())
if self.page_num
new_url = format(self.url % self.page_num) # 拼接处新的URL
self.page_num += 1 # 页数加1
yield scrapy.Request(url=new_url, callback=self.parse) # 手动发送请求
在终端中执行命令获取书名:scrapy crawl books
如果一切顺利你会看到打印的最终部分结果如下:
今日小结:
(1)创建scrapy项目:scrapy startproject 爬虫项目名称。
(2)创建爬虫应用:scrapy genspider books books.toscrape.com ((scrapy genspider 应用名称 爬取网页的起始url))应用名称在整个项目中作为唯一标识,不能出现同名的爬虫应用。
(3)运行爬虫程序:scrapy crawl books(scrapy crawl 爬虫应用)。
(4)parse方法:当一个页面下载完成后,Scrapy引擎会回调一个我们指定的页面解析函数(默认为parse方法)解析页面。
一个页面解析函数通常需要完成以下两个任务:
1、提取页面中的数据(使用XPath或CSS选择器)。
2、提取页面中的链接,并产生对链接页面的下载请求。
页面解析函数通常被实现成一个生成器函数,每一项从页面中提取的数据以及每一个对链接页面的下载请求都由yield语句提交给Scrapy引擎。
parse方法的工作机制:
(1)因为使用的yield,而不是return。parse函数将会被当做一个生成器使用。scrapy会逐一获取parse方法中生成的结果,并判断该结果是一个什么样的类型;
(2)如果是request则加入爬取队列,如果是item类型则使用pipeline处理,其他类型则返回错误信息。
(3)scrapy取到第一部分的request不会立马就去发送这个request,只是把这个request放到队列里,然后接着从生成器里获取;
(4)取尽第一部分的request,然后再获取第二部分的item,取到item了,就会放到对应的pipeline里处理;
(5)parse()方法作为回调函数(callback)赋值给了Request,指定parse()方法来处理这些请求 scrapy.Request(url, callback=self.parse)
(6)Request对象经过调度,执行生成 scrapy.http.response()的响应对象,并送回给parse()方法,直到调度器中没有Request(递归的思路)
(7)取尽之后,parse()工作结束,引擎再根据队列和pipelines中的内容去执行相应的操作;
(8)程序在取得各个页面的items前,会先处理完之前所有的request队列里的请求,然后再提取items。
(9)这一切的一切,Scrapy引擎和调度器将负责到底。