因果论(二)概率论基础(贝叶斯网络)

文章介绍了图的概念,包括顶点和边,以及它们在表示变量关系中的作用。接着,它详细阐述了贝叶斯网络,特别是马尔科夫父代变量集合的概念,以及如何用有向无环图(DAG)来表示变量间的依赖关系。此外,文章还提到了d-分离准则在检验变量独立性中的重要性。
摘要由CSDN通过智能技术生成

一、图

图由顶点集( 或节点集)V 和连接顶点E的边集( 或链接集) E 组成 图中的顶点对应于变量( 因此使用相同的符号V) , 边表示变量对之间的某种关系 具体何种关系因应用的不同而变化。由边连接的两个变量称为相邻变量
图中的每条边可以是有向的 由边上的单个箭头表示 也可以是无向的 无箭头链接) 在某些应用中 我们也会使用"双向 边来表示未观察到的共同原因 有时称为混杂因子)

 

 二、贝叶斯网络

图在概率与统计建模中的作用有三个方面:
1. 提供便捷的方法来表示众多的假定
2. 便 于联合概率函数的简约表示
3. 便于从观察中进行有效推断
定义1.马尔可夫父代变量集合
V={X_{1},X_{2},...,X_{n}}表示有序的变量集合,令P(v)表示这些变量的联合概率分布,如果PA_{j}是使X_{j}独立于其他前驱变量的极小前驱变量集合,那么变量集PA_{j}称为X_{j}的马尔科夫父代(变量)集合。换句话说,PA_{j}是满足公式(1)的{X_{1},X_{2},...,X_{j-1}}的子集且PA_{j}的任何子集均不满足公式(1)
 P(x_{j}|pa_j) = P(x_{j}|x_{1},x_{2},...,x_{j-1}))    (公式1)
定义1给出了贝叶斯网络的构造方法。定义1 为每个变量X_{j}分配一个足以确定X_{j}概率的前驱变量集合 PA_{j}一旦 我们获知父代集合 PA_{j} 的取值后 获悉其他先驱变量的值就变得冗余。 这种分配可以用 DAG 的形式表示 其中变量由节点表示 ,并从父节点集 PA_{j} 的节点到节点X_{j}也引入箭头。我们可以采用递归的方式进行构造。
比如:有概率联合分布(对应图的蕴涵分解) P(x_{1},x_{2},x_{3},x_{4},x_{5}) = P(x1)P(x_{2}|x_{1})P(x_{3}|x_{1})P(x_{4}|x_{2},x_{3})P(x_{5}|x_{4})
根据 P(x_{2}|x_{1})可以确定(x1,x2)相关,可以画出x1指向x2的有向子图;
根据 P(x_{3}|x_{1})可以确定(x1,x3)相关,可以画出x1指向x3的有向子图;
根据 P(x_{4}|x_{2},x_{3})可以确定(x2,x4)和(x2,x4)相关,可以画出x2指向x3和x2指向x4的有向子图;
根据 P(x_{5}|x_{4})可以确定(x4,x5)相关,可以画出x4指向x5的有向子图;

最终画出的有向无环图如下图所示。

 定义2:如果概率函数P容许有向无环图G有形如公式(1)的分解那么我们认为G表示P,G与P相容PG马尔可夫相关

在统计建模中 确定 DAG 和概率之间的相容性非常重要 要是因为相容性是有向无环图G 解释 P 表示的经验数据 即描述一个产生 P 的随机过程 的充分必要条件。
定义2:d-分离准则
考虑 3 个不 相交的 变量集X 、Y 和Z , 它们表示有向无环图 g 中的节点集 为了检验 在任何与g 相容的分布中在Z 条件下X 是否独立于Y , 我们需 要检验变量集 Z 所对应的 点是否"阻断 了从节点 x 到节点 y 的所有路径 这里的路径是指图中一系列连续的 (任意方向的 阻断可以解释为阻止这些路径连接的变量之间的信息流(或关联流 )。
正如下面所定 义的

 d-分离的一些定理

 

 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值