因果论 —— 模型、推理和推断(概率、图及因果模型)②

图与概率

图的符号与术语

  • 图由顶点集(或节点集) V V V和连接顶点对的边集(或链接集) E E E组成。图中的顶点对应用于变量,边表示变量对之间的某种关系。由边连接的两个变量称为相邻变量
  • 我们会使用“双向”边来表示未观察到的共同原因(有时称为混杂因子
  • 有向图可以包含有向环(例如, X → Y ,    Y → X X \to Y,\ \ Y \to X XY,  YX),表示相互因果关系反馈过程,但不包含自循环(例如, X → X X \to X XX
  • 如果有向图中的节点没有父节点,称其为根节点,若没有子节点,则称其为汇聚节点
  • 每个节点最多有一个子节点的树称为
  • 每对节点均有边相连的图称为完全图

贝叶斯网络

  • 图在概率与统计建模中的作用有三个方面:
    • 提供便捷的方法在表示众多的假定
    • 便于联合概率函数的简约表示
    • 便于从观察中进行有效推断
  • 无向图有时称为马尔可夫网络,主要用于表示对称的空间关系。
  • 有向图,尤其是无环图,用于表示因果关系或时间关系,这种图称为贝叶斯网络
  • 贝叶斯网络强调3个方面:
    • 输入信息的主观属性
    • 依赖贝叶斯条件作为信息更新的基础
    • 区分推理的因果模式证据模式
  • 假设我们有一个定义在n个离散变量上的分布P,我们可以将变量任意排序为 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn。根据概率演算的链式法则允许我们将 P P P分解为 n n n个条件分布的乘积:
    P ( x 1 , ⋯   , x n ) = ∏ j P ( x j ∣ x 1 , ⋯   , x j − 1 ) P(x_1,\cdots,x_n) = \prod_{j}P(x_j|x_1,\cdots,x_{j-1}) P(x1,,xn)=jP(xjx1,,xj1)
    现在假设某些变量 X j X_j Xj的条件概率不是对 X j X_j Xj的所有前驱变量敏感,而仅对其中的小部分敏感。我们将这部分敏感的前驱变量记为 P A j PA_j PAj,那么可以将乘积写为:
    P ( x j ∣ x 1 , ⋯   , x j − 1 ) = P ( x j ∣ p a j ) P(x_j|x_1,\cdots,x_{j-1}) = P(x_j|pa_j) P(xjx1,,xj1)=P(xjpaj)
    我们仅需要关注集合 P A j PA_j PAj的可能情况,而不需要将 X j X_j Xj的所有前驱变量 X 1 , ⋯   , X j − 1 X_1,\cdots,X_{j-1} X1,,Xj1的可能情况作为条件来确定 X j X_j Xj的概率。
  • 集合 P A j PA_j PAj称为 X j X_j Xj马尔可夫父代变量集合。
  • 概率分布 P P P的贝叶斯网络是有向无环图 G G G的一个必要条件是 P P P容许图 G G G所确定的乘积分解
  • 马尔可夫相容性:如果概率函数 P P P容许有向无环图G所确定的乘积分解,那么我们认为 G G G表示 P P P G G G P P P 相容 P P P G G G马尔可夫相关
  • 在统计建模中,确定DAG和概率之间的相容性非常重要,主要是因为相容性是有向无环图 G G G解释 P P P表示的经验数据的充分必要条件

  d \ d  d-分离准则

  • 路径 p p p被节点集 Z   d Z\ d Z d-分离(或阻断),当且仅当:
    • p p p包含了一个链 i → m → j i \to m \to j imj或一个分叉 i ← m → j i \gets m \to j imj,而中间节点 m m m Z Z Z中,或者
    • p p p包含一个反向分叉(或对撞) i → m ← j i \to m \gets j imj,而中间节点 m m m以及 m m m的任何后代节点都不在 Z Z Z中。
  • 集合 Z Z Z X X X Y Y Y   d \ d  d-分离当且仅当 Z Z Z阻断了从 X X X中每个节点到 Y Y Y中每个节点的所有路径
  • 对两个独立原因的共同结果的观察会使这两个原因相关,因为如果结果已经发生,其中一个原因的信息会使另一个原因的可能性变大或变小。
  •   d \ d  d-分离的概率含义:如果 X X X Y Y Y在有向无环图 G G G中被 Z   d Z\ d Z d-分离,那么在每一个与 G G G相容的分布中,以 Z Z Z为条件时, X X X独立于 Y Y Y。反之,如果 X X X Y Y Y在有向无环图 G G G中未被 Z   d Z\ d Z d-分离,那么至少存在一个与 G G G相容的分布,以 Z Z Z为条件时, X X X Y Y Y相关

贝叶斯网络推断

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
【干货书】《因果推理导论-机器学习角度》,132页pdf 有几个主要的主题贯穿全书。这些主题主要是对两个不同类别的比较。当你阅读的时候,很重要的一点是你要明白书的不同部分适合什么类别,不适合什么类别。 统计与因果。即使有无限多的数据,我们有时也无法计算一些因果量。相比之下,很多统计是关于在有限样本中解决不确定性的。当给定无限数据时,没有不确定性。然而,关联,一个统计概念,不是因果关系。在因果推理方面还有更多的工作要做,即使在开始使用无限数据之后也是如此。这是激发因果推理的主要区别。我们在这一章已经做了这样的区分,并将在整本书中继续做这样的区分。 识别与评估。因果效应的识别是因果推论所独有的。这是一个有待解决的问题,即使我们有无限的数据。然而,因果推理也与传统统计和机器学习共享估计。我们将主要从识别因果效应(在第2章中,4和6)之前估计因果效应(第7章)。例外是2.5节和节4.6.2,我们进行完整的例子估计给你的整个过程是什么样子。 介入与观察。如果我们能进行干预/实验,因果效应的识别就相对容易了。这很简单,因为我们可以采取我们想要衡量因果效应的行动,并简单地衡量我们采取行动后的效果。观测数据变得更加复杂,因为数据中几乎总是引入混杂。 假设。将会有一个很大的焦点是我们用什么假设来得到我们得到的结果。每个假设都有自己的框来帮助人们注意到它。清晰的假设应该使我们很容易看到对给定的因果分析或因果模型的批评。他们希望,清晰地提出假设将导致对因果关系的更清晰的讨论。
因果推断是科学研究中的重要问题之一。无论是在社会科学、自然科学还是医学领域,因果推断都是理解现象的重要手段。因果模型推理推断PDF是一种新兴的因果推断方法。本文将详细探讨因果模型推理推断PDF的相关问题。 因果模型是用来描述一组变量之间因果关系的统计模型。在因果推断中,因果模型是非常重要的组成部分,用来确定因果关系。对于一个因果模型进行推理推断,需要从一系列数据中确定因果关系。因果模型推理推断PDF就是用来解决这个问题的。 PDF是概率密度函数的缩写。在因果模型推理推断PDF中,概率密度函数被用来描述变量之间的因果关系。具体地说,PDF描述一个变量如何取值的可能性。在因果推断中,PDF被用来表示一个变量受到其他变量的影响程度。因此,通过比较不同变量之间的PDF,可以确定因果关系。 因果模型推理推断PDF的方法有助于减少因果估计的误差。原因是因果估计通常需要基于实际观察到的数据来完成。然而,在实际观测中,存在许多可能的干扰因素。如果这些因素被忽略,因果推断的结果就可能出现误差。因此,因果模型推理推断PDF提供了一个有效的方法来考虑这些干扰因素的影响,从而得到更准确的因果推断结果。 总之,因果模型推理推断PDF是一种新的因果推断方法,对于理解变量之间的因果关系、减少因果估计误差具有重要意义。该方法还为数据科学领域的进一步研究提供了有力的工具。同时,因果模型推理推断PDF的应用也存在一定的挑战与限制。因此,需要进一步加强相关方法的研究和应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羽星_s

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值