贝叶斯网络介绍2:贝叶斯网络和马尔可夫条件之基本概念

考虑l个离散联合分布的随机变量,根据条件概率分布,我们知道,联合分布概率可表示为:

P(x_1,x_2,....,x_l)=P(x_l|x_{l-1},x_{l-2},...,x_1)P(x_{l-1}|x_{l-2},x_{l-3},...,x_1)...P(x_1)(1)

设每个变量有k个值,那么要求某个变量x_1的概率取值,则要对其他所有变量求和,即

P(x_1)=\sum_{x_2}...\sum_{x_l}P(x_2,....,x_l)(2)

对于变量有k个值的情况,该问题的复杂度是O(k^l),显然复杂度非常高,实际应用中是不可行的,考虑另一种极端情况,即所有变量都是相互独立的,那么这个时候只需单独求P(x_1),也就是我们通常使用的朴素贝叶斯的方法。贝叶斯网络的方法介于两个极端之间,即每个变量的变化都依赖于其他所有变量的一个子集,此时联合概率分布可以表示为:

P(x_1,x_2,....,x_l)=\prod_{i=1}^{l}p(x_i|Pa_i)(3)

这里,Pa_i对应与变量x_i相关的变量集合,其为全体变量集合的一个子集,例如

P(x_1,x_2,x_3,x_4,x_5,x_6)=P(x_6|x_4)P(x_5|x_3,x_4)P(x_4|x_1,x_2)P(x_3|x_1)p(x_2)p(x_1)(4)

公式(4)对应的贝叶斯网络结构为:

Pa_6=\{x_4\},Pa_5=\{x_3,x_4\},Pa_4=\{x_1,x_2\},Pa_3=\{x_1\},Pa_2=\varnothing,Pa_=\varnothing。集合Pa_i称为变量x_i的父集合,从统计学的角度来看,如果给定父集合的值,那么变量x_i统计独立于集合里所有其他变量,每一个p(x_i|Pa_i)都表示了一种条件独立的关系,其给出了一个蕴含在多元集合中的概率结构,由于其相互独立的特性,我们可以利用此特性降低计算复杂度。

1.图的基本定义图的定义一般用G=\{V,E\}表示,V=\{x_1,...,x_l\}节点E \subset V \times V表示节点间的互联关系即图的,每一个成员都是一对连接关系(也就是一条边)(x_i,x_j) \in E,一条边可以是有方向(表示为(x_i\rightarrow x_j))的,也可以是无方向的,一条边将两个节点连接起来,如果结点x_1可以通过一些列边连接到x_k,那么我们称这些边组成的序列为x_1x_k路径(path),如果一条路径起终点为同一个节点,我们称之为循环(cycle)有向图是指只包含有向边的图结构,若其结构内不存在cycle,那么称之为有向无循环图(directed acyclic graph,DAG),如果x_i可以通过一条路径连接到x_j,那么x_i称为x_j祖先,否则则为非祖先,如果存在一条边(有方向的)从x_ix_j,那么x_i称为x_j父节点x_j称为x_i子点。这里要注意区分祖先节点和父节点地区别。
贝叶斯网络结构是一个DAG,其节点代表随机变量x_1,x_2,....,x_l,其任一节点变量x_i关于父节点集合条件独立于所有非祖先节点,这通常也被称为马尔科夫条件。这就是贝叶斯网络的基本定义,这里给出条件独立的定义:如果P(XY|Z)=P(X|Z)P(Y|Z)或者等价地P(X|YZ)=P(X|Z),则称事件XY对于给定事件是Z条件独立的,也就是说如果Z发生时,X发生与否与Y无关。需要注意一点条件独立和独立是不存在蕴含关系的。

那么基于此,下面介绍两个比较重要的定理:

定理1:G为一个贝叶斯网络结构,p为该图结构所有节点对应随机变量的联合概率分布,那么p就等于所有节点关于父节点条件分布概率的乘积,通常称之为p可以因式分解(factorizes over)于G。且该定理反过来说也是正确的。

定理2:G为一个DAG,每一个节点都具有关于父节点的条件概率,那么这些条件概率的乘积得到了变量的联合分布,并且其满足马尔科夫条件。该定理是很有用的,因为在实际中,这通常是我们构建概率图模型的方式,对于我们要模型化的物理过程,使用推理的方法分层构建,并在图模型中编码条件独立关系。

我们对比下定理1定理2定理1假定了一种分布,基于潜在的条件独立建立了贝叶斯网络,定理2与之相反,基于网络结构,解释了每个节点的分布特性。

举一个例子:我们现在来研究一个国家的GNP与其教育水平、成年人工作类型的关系。x_1为GNP,取2个值HGP和LGP分别对应高(high)和低(low)GNP;x_2为教育水平,取3个值NE、LE和HE分别表示未接受教育、低水平教育和高水平教育;x_3为工作类型,取3个值UN、LP和HP,分别对应无工作、低收入和高收入。使用足够多的样本,可以学习到如下概率:

1.边际概率:

2.条件概率:

       

可以看到,即使简单的3个变量,也需要17个概率值。考虑贝叶斯网络图如下:

马尔科夫条件认为,给定x_2的情况下,x_1x_3不相关(工作的好坏取决于教育情况而与国家GNP无关,这里只是假设,不要杠)。下面我们验证一下贝叶斯网络是满足马尔科夫条件的,根据定理1,联合概率可以表示为:

P(x_1,x_2,x_3)=P(x_3|x_2)P(x_2|x_1)P(x_1)

也就是说,如果一个人来自富有的国家,接受过高等教育,拿到较高薪水的概率为:(0.8)(0.75)(0.2) = 0.12,类似的,一个人来自贫穷国家,接受教育水平较低,收入低的概率是: 0.476。下面可以验证下,贝叶斯网络结构是满足马尔科夫条件的,考虑:

并且

故可以得到

 

这样我们验证了基于条件概率建立的网络,这些概率编码了条件独立性,如定理2所述。

 

 

 

 

  • 5
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值