信息熵 (Entropy)

在深度学习和机器学习中,熵是一个衡量不确定性或信息量的关键概念。它在各个方面发挥着作用,从数据的压缩和分布的特性分析,到模型的正则化和决策过程的优化。以下是熵在深度学习中的一些关键知识点:

信息熵 (Entropy)

信息熵是由克劳德·香农(Claude Shannon)在信息论中引入的概念,用来量化信息的不确定性。信息熵本质上是对可能性的一种度量:一个事件的不确定性越大,我们从该事件的发生中获得的信息就越多。信息熵的数学定义为:
H ( X ) = − ∑ i = 1 n p ( x i ) log ⁡ p ( x i ) H(X) = -\sum_{i=1}^{n} p(x_i) \log p(x_i) H(X)=i=1np(xi)logp(xi)
其中, H ( X ) H(X) H(X)表示随机变量 X X X 的熵, x i x_i xi表示随机变量的一个可能的取值, p ( x i ) p(x_i) p(xi)表示该取值的概率,而 n n n 是随机变量所有可能取值的数目。对数的底通常取2,这时熵的单位是比特(bit)。如果对数的底取自然对数 e,则熵的单位是纳特(nat)。

信息熵的直观解释

  • 最优编码:在最佳情况下,熵可以被视为编码一条消息所需的最少比特数的期望值。这意味着在没有任何冗余的情况下压缩数据所需的平均最小位数。
  • 不确定性度量:信息熵也表示我们在了解随机变量的具体值之前的不确定度。熵越高,不确定性越大;熵越低,不确定性越小。

性质

  • 熵永远是非负的,即 H ( X ) ≥ 0 H(X) \geq 0 H(X)0。当随机变量的取值是确定的(只有一个事件发生概率为1,其余都是0),熵为0。
  • 对于给定数量的类别,当所有类别发生的概率都相等时(即分布是均匀分布),熵达到最大值。
  • 熵是概率分布的函数,与随机变量的具体取值无关。

应用

信息熵在深度学习中有许多应用:

  • 概率模型的评估:在概率模型中,熵可以帮助我们了解模型对数据的拟合程度。如果模型完全确定了数据的分布,熵将为0。
  • 特征选择:在决策树算法中,信息熵用于评估特征的重要性,作为选择分割点的标准(信息增益)。
  • 正则化:在训练神经网络时,可以通过最小化输出分布的熵来增加模型的确定性,或者最大化熵来鼓励模型探索空间中的多样性解。

信息熵是机器学习中的一个核心概念,因为它提供了一种量化信息并根据这些信息构建和评估模型的方法。理解熵不仅对于模型设计和评价很重要,而且在处理数据压缩、信号处理等多个领域都是基础性概念。

交叉熵 (Cross-Entropy)

交叉熵是信息论中的一个概念,它衡量了两个概率分布之间的差异。在机器学习和深度学习中,交叉熵通常被用作损失函数,尤其是在分类问题中评价模型的性能。交叉熵损失函数能够度量模型预测概率分布与实际标签的概率分布之间的不匹配程度。

数学定义

对于离散概率分布,若有两个概率分布 P P P Q Q Q,其中 § 通常代表数据的真实分布,而 Q Q Q代表模型预测的分布,那么交叉熵 H ( P , Q ) H(P, Q) H(P,Q)可以定义为:
H ( P , Q ) = − ∑ x P ( x ) log ⁡ ( Q ( x ) ) H(P, Q) = -\sum_{x} P(x) \log(Q(x)) H(P,Q)=xP(x)log(Q(x))
这里的求和是对所有可能事件 x x x进行的, P ( x ) P(x) P(x)是样本点 x x x在真实分布中的概率, Q ( x ) Q(x) Q(x) 是样本点 x x x在预测分布中的概率。

用途

在分类问题中, P P P一般表示实际的标签的分布,这通常是一个one-hot编码的分布,其中正确类别的概率为1,其余为0。 Q Q Q 则表示模型对各个类别的预测概率,这通常由softmax函数输出。
例如,在一个二分类问题中,如果一个样本属于第一类,那么它的真实分布 P P P可以表示为 P ( 1 ) = 1 P(1) = 1 P(1)=1 P ( 0 ) = 0 P(0) = 0 P(0)=0。如果模型预测这个样本属于第一类的概率为 0.8,属于第二类的概率为 0.2,则 Q Q Q 可以表示为 Q ( 1 ) = 0.8 Q(1) = 0.8 Q(1)=0.8 Q ( 0 ) = 0.2 Q(0) = 0.2 Q(0)=0.2。那么,交叉熵可以计算为:
H ( P , Q ) = − ( 1 ⋅ log ⁡ ( 0.8 ) + 0 ⋅ log ⁡ ( 0.2 ) ) H(P, Q) = - (1 \cdot \log(0.8) + 0 \cdot \log(0.2)) H(P,Q)=(1log(0.8)+0log(0.2))
由于 P ( 0 ) = 0 P(0) = 0 P(0)=0,这一项在计算中不起作用,因此上述表达式可以简化为:
H ( P , Q ) = − log ⁡ ( 0.8 ) H(P, Q) = - \log(0.8) H(P,Q)=log(0.8)

与似然函数的关系

在统计学中,最大化对数似然函数等价于最小化交叉熵。在二分类问题中,二元交叉熵损失函数与伯努利试验的对数似然函数是相同的。

与KL散度的关系

交叉熵与KL散度(Kullback-Leibler Divergence)相关,KL散度是衡量两个概率分布差异的另一种方式。实际上,KL散度可以通过交叉熵和熵的关系表达:
D K L ( P ∣ ∣ Q ) = H ( P , Q ) − H ( P ) D_{KL}(P || Q) = H(P, Q) - H(P) DKL(P∣∣Q)=H(P,Q)H(P)
这里 H ( P ) H(P) H(P)是真实分布 P P P 的熵,而 D K L ( P ∣ ∣ Q ) D_{KL}(P || Q) DKL(P∣∣Q) P P P 相对于 Q Q Q的KL散度。在深度学习的实际应用中,由于 H ( P ) H(P) H(P)是一个常数(因为真实标签的分布是确定的),最小化交叉熵 H ( P , Q ) H(P, Q) H(P,Q) 与最小化 P P P相对于 Q Q Q 的KL散度是等价的。

实际应用

在实际应用中,当使用神经网络进行分类任务时,交叉熵损失函数能够有效地逼近模型输出与真实标签之间的差异,并指导模型学习的方向。通过反向传播算法,网络可以调整参数以最小化交叉熵损失,从而提高模型的预测准确度。由于交叉熵对于概率的小变化非常敏感,它特别适合于概率输出模型,如使用softmax函数的多分类模型。

相对熵 (Kullback-Leibler Divergence)

相对熵,也称为KL散度(Kullback-Leibler Divergence),是由Solomon Kullback和Richard Leibler提出的用于度量两个概率分布之间差异的统计量。KL散度在许多领域内都有应用,包括信息论、机器学习、统计推断以及深度学习等。它是衡量两个概率分布 P P P Q Q Q相似性的一种非对称性度量。

数学定义

对于离散随机变量,如果我们有两个概率分布 P P P Q Q Q,其中 P P P表示真实分布,而 Q Q Q表示模型预测的分布,则KL散度定义为:
D K L ( P ∣ ∣ Q ) = ∑ i P ( i ) log ⁡ P ( i ) Q ( i ) D{KL}(P || Q) = \sum_{i} P(i) \log\frac{P(i)}{Q(i)} DKL(P∣∣Q)=iP(i)logQ(i)P(i)
其中 P ( i ) P(i) P(i) Q ( i ) Q(i) Q(i)分别是事件 i i i在两个分布中的概率。对于连续随机变量,KL散度以积分形式表示:
D K L ( P ∣ ∣ Q ) = ∫ − ∞ + ∞ p ( x ) log ⁡ p ( x ) q ( x ) d x D{KL}(P || Q) = \int_{-\infty}^{+\infty} p(x) \log\frac{p(x)}{q(x)} dx DKL(P∣∣Q)=+p(x)logq(x)p(x)dx
其中 p ( x ) p(x) p(x) q ( x ) q(x) q(x)是连续随机变量的概率密度函数。

性质

  • 非负性:KL散度总是非负的,即 D K L ( P ∣ ∣ Q ) ≥ 0 D_{KL}(P || Q) \geq 0 DKL(P∣∣Q)0 ,这是由吉布斯不等式(Gibbs’ inequality)保证的。当且仅当 P P P Q Q Q相同时,KL散度为零。
  • 非对称性:KL散度是非对称的,即 D K L ( P ∣ ∣ Q ) D{KL}(P || Q) DKL(P∣∣Q)_不等于 _ D K L ( Q ∣ ∣ P ) D{KL}(Q || P) DKL(Q∣∣P)。这意味着将 P P P当作 Q Q Q 的近似,与将 Q Q Q当作 P P P的近似,在量化差异时是不同的。

直观解释

KL散度可以被解释为当我们使用一个错误的概率分布 Q Q Q来近似正确分布 P P P 时,产生的信息损失。它度量了使用模型 Q Q Q来表示真实数据 P P P时,所损失的平均信息量。
在实际应用中,如果我们有一个复杂的目标分布 P P P,我们可能会尝试用一个更简单的分布 Q Q Q来近似它。KL散度告诉我们,这种近似可能会损失多少信息。在机器学习中,我们常常尝试最小化目标分布 P P P 和模型分布 Q Q Q之间的KL散度,以此来训练模型更好地逼近数据的真实分布。

应用

  • 机器学习:在机器学习中,特别是在自然语言处理和计算机视觉等领域,KL散度被用作损失函数的一部分,帮助模型调整参数。
  • 变分推断:在变分推断中,KL散度用于衡量变分分布与目标后验分布之间的差异,以寻找最佳的近似后验分布。
  • 信息理论:在信息理论中,KL散度是度量信息传输过程中损失的一种方式。
  • 熵正则化:在深度学习中,KL散度可以用于熵正则化,以防止模型过于自信,促进模型产生更平滑的概率分布。

理解KL散度对于机器学习和统计建模至关重要,因为它涉及了如何准确地捕捉、理解和使用数据中的信息。在实践中,它常常以损失函数的形式出现,指导模型学习过程中的参数优化。

条件熵 (Conditional Entropy)

条件熵(Conditional Entropy)是信息论中的一个概念,用来衡量在已知某个随机变量的情况下,另一个随机变量的不确定性。简单来说,条件熵量化了在知道一个变量的前提下,另一个变量仍然保有的平均信息量。

数学定义

设有两个离散随机变量 X X X Y Y Y,它们的联合概率分布为 p ( x , y ) p(x,y) p(x,y),边缘概率分布分别为 p ( x ) p(x) p(x) p ( y ) p(y) p(y)。条件熵 H ( Y ∣ X ) H(Y|X) H(YX)定义为:
H ( Y ∣ X ) = − ∑ x ∈ X p ( x ) ( ∑ y ∈ Y p ( y ∣ x ) log ⁡ p ( y ∣ x ) ) H(Y|X) = -\sum_{x \in X} p(x) \left( \sum_{y \in Y} p(y|x) \log p(y|x) \right) H(YX)=xXp(x)(yYp(yx)logp(yx))
这里, p ( y ∣ x ) p(y|x) p(yx) 是给定 X = x X=x X=x的情况下 Y Y Y的条件概率分布。条件熵的公式可以展开为:
H ( Y ∣ X ) = − ∑ x ∈ X , y ∈ Y p ( x , y ) log ⁡ p ( y ∣ x ) H(Y|X) = -\sum_{x \in X, y \in Y} p(x,y) \log p(y|x) H(YX)=xX,yYp(x,y)logp(yx)
这个表达式是说,我们先对 Y Y Y 的每个可能值计算其在 X X X的每个值条件下的熵,然后按 (X) 的概率加权求和。

直观解释

条件熵 H ( Y ∣ X ) H(Y|X) H(YX)描述了在已知随机变量 X X X的情况下随机变量 Y Y Y的平均不确定性。如果 X X X Y Y Y 完全独立,则 H ( Y ∣ X ) = H ( Y ) H(Y|X) = H(Y) H(YX)=H(Y),这意味着知道 X X X 的值并不会给我们关于 Y Y Y的额外信息。相反地,如果 Y Y Y 完全依赖于 X X X,那么 H ( Y ∣ X ) = 0 H(Y|X) = 0 H(YX)=0,这意味着知道 X X X 的值就可以完全确定 Y Y Y 的值。
条件熵也满足链式法则,即两个变量的联合熵可以表示为:
H ( X , Y ) = H ( X ) + H ( Y ∣ X ) H(X,Y) = H(X) + H(Y|X) H(X,Y)=H(X)+H(YX)
这意味着 X X X Y Y Y的总不确定性等于 X X X的不确定性加上给定 X X X Y Y Y 的不确定性。

性质

  • 非负性:条件熵总是非负的。
  • 最小和最大值:条件熵的最小值是0,这发生在给定 X X X Y Y Y 是确定的情况;条件熵的最大值是 H ( Y ) H(Y) H(Y),当 X X X Y Y Y是独立的。

应用

  • 信息传输:在信息传输中,条件熵可以用来量化信号在给定某些已知条件或干扰存在时的不确定性。
  • 机器学习:在机器学习的决策树算法中,条件熵用于在给定当前特征的情况下衡量其它特征的额外信息量,以此来评估分割的好坏。
  • 特征选择:在特征选择时,条件熵可以帮助我们判断给定某个特征后,目标变量的不确定程度的减少量,进而决定特征的重要性。
  • 密码学:在密码学中,条件熵用于衡量在已知部分信息的前提下,获取剩余信息的难度。

条件熵是一个非常重要的概念,因为它提供了一种在给定相关信息情况下衡量剩余信息不确定性的方法。在数据分析、机器学习和其他领域中,理解和计算条件熵对于建立模型和做出预测都是至关重要的。

互信息 (Mutual Information)

互信息(Mutual Information,简称MI)是信息论中的一个基本概念,用来度量两个随机变量之间的相互依赖性。它衡量了通过一个变量能获得另一个变量多少信息,亦即,一个变量包含关于另一个变量的信息量。

数学定义

对于两个离散随机变量 X X X Y Y Y,它们的互信息 I ( X ; Y ) I(X; Y) I(X;Y)定义为:
I ( X ; Y ) = ∑ y ∈ Y ∑ x ∈ X p ( x , y ) log ⁡ ( p ( x , y ) p ( x ) p ( y ) ) I(X; Y) = \sum_{y \in Y} \sum_{x \in X} p(x, y) \log \left(\frac{p(x, y)}{p(x)p(y)}\right) I(X;Y)=yYxXp(x,y)log(p(x)p(y)p(x,y))
其中, p ( x , y ) p(x, y) p(x,y) X X X Y Y Y 的联合概率分布, p ( x ) p(x) p(x) p ( y ) p(y) p(y)分别是 X X X Y Y Y的边缘概率分布。
对于连续随机变量,互信息定义为:
I ( X ; Y ) = ∫ Y ∫ X p ( x , y ) log ⁡ ( p ( x , y ) p ( x ) p ( y ) ) d x d y I(X; Y) = \int_Y \int_X p(x, y) \log \left(\frac{p(x, y)}{p(x)p(y)}\right) dxdy I(X;Y)=YXp(x,y)log(p(x)p(y)p(x,y))dxdy
互信息可以被视为两个变量共同信息的期望值,或者理解为变量 X X X Y Y Y的联合分布与各自独立分布之积的差异性。

直观解释

互信息度量了知道一变量的信息后,另一变量不确定性减少的量。如果 X ) X) X) Y Y Y独立,则 I ( X ; Y ) = 0 I(X; Y) = 0 I(X;Y)=0,表示一个变量并不提供关于另一个变量的任何信息。如果 X X X Y Y Y 存在某种依赖关系, I ( X ; Y ) I(X; Y) I(X;Y)将大于零。

性质

  • 非负性:互信息永远是非负的, I ( X ; Y ) ≥ 0 I(X; Y) \geq 0 I(X;Y)0
  • 对称性:互信息是对称的,即 I ( X ; Y ) = I ( Y ; X ) I(X; Y) = I(Y; X) I(X;Y)=I(Y;X)
  • 熵的关系:互信息与边缘熵和条件熵有以下关系:

I ( X ; Y ) = H ( X ) − H ( X ∣ Y ) = H ( Y ) − H ( Y ∣ X ) I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) I(X;Y)=H(X)H(XY)=H(Y)H(YX)
此外,它还与联合熵和条件熵满足以下关系:
I ( X ; Y ) = H ( X ) + H ( Y ) − H ( X , Y ) I(X; Y) = H(X) + H(Y) - H(X, Y) I(X;Y)=H(X)+H(Y)H(X,Y)
其中 H ( X , Y ) H(X, Y) H(X,Y) 是联合熵, H ( X ) H(X) H(X) H ( Y ) H(Y) H(Y)是边缘熵。

  • 相对熵:互信息也可以被视为变量 X X X Y Y Y的联合分布相对于假设它们是独立的分布的相对熵(KL散度)。

应用

  • 特征选择:在机器学习中,互信息用于特征选择,以确定哪些特征与目标变量最相关。
  • 图像配准:在医学图像分析中,互信息被用作图像配准的相似性度量。
  • 通信理论:在通信理论中,互信息用来衡量发送的信号和接收到的信号之间的信息量。
  • 复杂网络:在复杂网络分析中,互信息可以用来分析节点之间的信息传输效率。

互信息是一个强大的工具,用来理解随机变量之间的相互作用和信息共享。由于它不依赖于变量之间的线性关系,互信息在非线性关系分析中非常有用。

熵正则化 (Entropy Regularization)

熵正则化涉及在损失函数中加入一个与熵相关的额外项。假设我们有一个分类模型,它输出一个概率分布 p ( y ∣ x ) p(y|x) p(yx),表示给定输入 x x x时类别 y y y的概率。熵正则化后的损失函数可能形式为:
L = L o r i g i n a l + λ H ( p ) L = L_{original} + \lambda H(p) L=Loriginal+λH(p)
其中 L o r i g i n a l L_{original} Loriginal 是原始的损失函数(如交叉熵损失), H ( p ) H(p) H(p)是模型输出概率分布的熵, λ \lambda λ是一个正则化参数,用于平衡原始损失与熵之间的权重。
熵正则化的主要目的是:

  1. 防止过度自信:避免模型对于某些样本的预测过于确定,即输出的概率分布过于“尖锐”,这有助于防止过拟合。
  2. 鼓励探索:在强化学习中,熵正则化可以鼓励策略探索更多的动作,而不是只集中在少数几个看似最优的动作上。
  3. 提高泛化能力:通过让模型保持对不同可能结果的开放性,可以提升模型的泛化能力。

应用领域

  • 神经网络训练:在神经网络训练中,熵正则化有助于避免网络在训练集上过拟合,可能导致更好的测试集性能。
  • 强化学习:在强化学习中,熵正则化是一种常用的技术,特别是在策略梯度方法中,它鼓励策略探索更多可能的动作。
  • 生成模型:在生成对抗网络(GANs)或变分自编码器(VAEs)等生成模型中,熵正则化可以帮助模型学会生成更多样化的样本。

在实际应用中,合适的正则化参数 (\lambda) 的选择非常关键,因为过高的熵正则化可能导致模型对任何输入都不够确定,而过低的熵正则化可能无法提供足够的正则化效果。通常,这个参数需要通过实验和验证集性能来调整。

联合熵和边缘熵

联合熵(Joint Entropy)和边缘熵(Marginal Entropy)是信息论中的两个基本概念,都用来衡量信息的不确定性,但它们的应用场景和计算方式有所不同。

联合熵(Joint Entropy)

联合熵指的是两个(或多个)随机变量共同分布的熵。对于离散随机变量 (X) 和 (Y),其联合熵 (H(X, Y)) 可以表示为:
H ( X , Y ) = − ∑ x ∈ X ∑ y ∈ Y p ( x , y ) log ⁡ p ( x , y ) H(X, Y) = -\sum_{x \in X}\sum_{y \in Y} p(x, y) \log p(x, y) H(X,Y)=xXyYp(x,y)logp(x,y)
这里, p ( x , y ) p(x, y) p(x,y) 是变量 X X X和变量 Y Y Y同时发生的联合概率分布。联合熵衡量的是在同时考虑 X X X Y Y Y 的情况下系统的总不确定性。如果 X X X Y Y Y是独立的,我们有 H ( X , Y ) = H ( X ) + H ( Y ) H(X, Y) = H(X) + H(Y) H(X,Y)=H(X)+H(Y),其中 H ( X ) H(X) H(X) H ( Y ) H(Y) H(Y)分别是 X X X Y Y Y 的边缘熵。

边缘熵(Marginal Entropy)

边缘熵描述的是单个随机变量的熵。对于上述的随机变量 X X X,其边缘熵 H ( X ) H(X) H(X)定义为:
H ( X ) = − ∑ x ∈ X p ( x ) log ⁡ p ( x ) H(X) = -\sum_{x \in X} p(x) \log p(x) H(X)=xXp(x)logp(x)
类似地, Y Y Y的边缘熵 H ( Y ) H(Y) H(Y)定义为:
H ( Y ) = − ∑ y ∈ Y p ( y ) log ⁡ p ( y ) H(Y) = -\sum_{y \in Y} p(y) \log p(y) H(Y)=yYp(y)logp(y)
在这里, p ( x ) p(x) p(x) p ( y ) p(y) p(y)分别是 X X X Y Y Y的边缘概率分布,即不考虑 Y Y Y的情况下单独 X X X发生的概率,以及不考虑 X X X的情况下单独 Y Y Y 发生的概率。

熵的应用

在深度学习和机器学习中,熵是衡量不确定性和信息量的关键指标,它在多个方面有着广泛的应用:
交叉熵(Cross-Entropy)
在深度学习中,交叉熵是最常用的损失函数之一,尤其是在分类问题中。它衡量的是模型预测概率分布与真实标签的概率分布之间的差异。给定一个正确的分类标签和模型预测的概率,交叉熵损失越低,模型的预测就越准确。
信息增益(Information Gain)
在决策树等机器学习模型中,信息增益基于熵来选择最好的分割特征。信息增益量化了一个特征使得类别的不确定性减少的程度。一般来说,信息增益高的特征更有可能被选择作为节点分割的依据。
正则化(Regularization)
熵也可以作为一个正则项添加到损失函数中,这通常称作熵正则化。它鼓励模型输出一个更平滑或更不确定的概率分布,这可以增加模型的鲁棒性和泛化能力,防止过拟合。
探索与利用(Exploration vs. Exploitation)
在强化学习中,熵用于鼓励探索。通过最大化策略的熵,可以确保智能体不会过早地聚焦于少数几个看似最优的动作,而是探索多种可能的动作,这有助于找到长期更优的策略。
神经网络中的激活函数
熵也启发了一些激活函数的设计,例如Softmax函数,它被广泛用于多类分类问题中。Softmax函数可以将神经网络输出的原始分数转换为概率分布,这通过最大化输出概率分布的熵来增加模型预测的不确定性。
生成模型
在生成模型中,如变分自编码器(VAEs)和生成对抗网络(GANs),熵扮演着重要的角色。VAEs 用熵来量化编码的隐空间,而GANs 则用它来衡量生成的样本多样性和质量。
集成学习
在集成学习中,熵可以用来度量集成中各个模型的多样性。理论上,模型多样性越大,集成的效果越好。
聚类分析
在聚类分析中,熵可以帮助评估聚类的质量,特别是在使用如K均值聚类算法的时候,熵可以指导如何选择最优的聚类数目。
熵作为度量不确定性的工具,在深度学习和机器学习领域有着广泛而深入的应用,它帮助研究者和工程师们设计出更有效的算法和模型架构。

  • 21
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在Matlab中,可以使用Entropy函数来计算信号的信息熵信息熵是用来衡量信号的不确定性和信息量的度量指标。通过计算信号的概率分布和对数运算,可以得到信号的信息熵。下面是一个示例代码: ```matlab % 生成两个随机信号 x1 = randn(1000,1); x2 = rand(1000,1); % 计算信号的信息熵 H1 = entropy(x1); H2 = entropy(x2); disp(['Signal 1 entropy: ', num2str(H1)]); disp(['Signal 2 entropy: ', num2str(H2)]); ``` 在这个示例中,我们生成了两个随机信号x1和x2,并使用Entropy函数分别计算了它们的信息熵信息熵的值越大,表示信号的不确定性和信息量越高。根据信号的概率分布情况,可以得出信号的信息熵值。需要注意的是,确定的事件的信息熵值为零,而时间不确定的事件的信息熵值会大于零。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [matlab求信号的信息熵](https://blog.csdn.net/weixin_44463965/article/details/130250850)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [【熵与特征提取】基于“信息熵”的特征指标及其MATLAB代码实现(功率谱熵、奇异谱熵、能量熵)](https://blog.csdn.net/fengzhuqiaoqiu/article/details/121177862)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值