最大后验估计_数理统计第16讲(贝叶斯点估计:先验信息,先验分布,后验分布)...

本文介绍了贝叶斯统计学派的理论,强调了先验信息在统计推断中的作用。贝叶斯学派认为未知参数是随机变量,通过综合总体信息、样本信息和先验信息,利用后验分布进行参数估计。重点讲解了贝叶斯点估计的三种类型:众数型、中位数型和期望型,以及一个估算废品率的实例,展示了不同样本量对估计结果的影响。
摘要由CSDN通过智能技术生成

第七章、贝叶斯统计方法

7.1引言及若干概念

我们在进行统计推断时,总是假定总体是来自某个分布族的,并从总体中抽取一组样本。其中我们所假定的总体来自的分布族,就是所谓的总体信息;而从总体中抽取的样本,又能给我们样本信息;我们之前讲的点估计方法都只是基于这两种信息进行的。

然而统计学家Lehmann认为,我们在进行试验之前,实际上已经对代估的参数有一定的了解,比如我们调查某厂的不合格率时,过去关于该厂不合格率的历史资料,这种在抽样前就已经存在的有关统计推断的信息,称为先验信息

关于先验信息的争论,直接导致了两大统计学派的出现:

  • 经典统计学派:只利用总体信息和样本信息来进行统计推断
  • 贝叶斯统计学派:除了利用总体信息和样本信息,还利用先验信息进行统计推断

事实上两个学派争论的焦点并不在于先验信息是否有用,因为下面这个例子告诉我们,先验信息对统计推断有着非常大的影响:

一位常饮牛奶加茶的妇女声称,她能分辨出先倒进杯子里的是茶还是奶.对此做了十次试验,她都正确地说出来.
我们把分辨奶与茶次序看做是统计推断的过程,把妇女的经验看做是先验信息。如果该妇女完全没有经验,那么它十次都才对的概率非常小,在一次实验中几乎不可能发生,所以经验对她的判断起着至关重要的作用。

那么两个学派争论的焦点是什么呢?我们先来看看贝叶斯学派的学者是如何把先验信息纳入统计推断方法中的:

两个统计学派的学者都有着共同的目的,就是估计参数。但是对于参数的理解,两个学派却是截然不同的。其中经典统计学派认为,参数虽然是未知的,但是它还是一个数,是固定不变的,需要做的只是找一个比较接近它的量来代替它;而贝叶斯统计学派认为,既然参数是不知道的,那么把它看做是随机变量应该是合理的,也就是不断变化的量。例如,对于一个工厂而言,其次品率也不是一成不变的,在工人们精神好的时候次品率相对会低一些。所以贝叶斯学派是用概率来刻画未知参数的变动情况的。

具体是怎么做的呢?

贝叶斯学派将未知参数

看成是随机变量,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值