r语言 matlab 函数定义,R语言BP神经网络建模newff,train,sim函数详解

所使用的包:AMORE

建立BP神经网络所需要的函数:newff,train和sim。

newff(n.neurons, learning.rate.global, momentum.global,

error.criterium, Stao,

hidden.layer, output.layer, method)

参数:

n.neurons:一个数字型向量,第一个向量值表示训练样本输入神经元的个数,最后一个向量值表示训练样本输出神经元的个数,中间的向量值依次表示各个隐藏层神经元的个数。

Example:n.neurons=c(12,2,4) 表示一个3层神经网络即12-2-4

n.neurons=c(12,2,4,4) 表示一个4层神经网络即 12-2-4-4,含有2个隐层

learning.rate.global :该参数用于设置神经元学习率

momentum.global :设置全局动量指标,部分训练方法将用到

error.criterium : 用于设置训练误差函数所采用的方法。包括了:

LMS:最小均方误差

LMLS : 最小均对数平方误差

TAO :

Stao

: 此参数用于error.TAO

函数,其他误差函数无效。

hidden.layer : 设置隐藏层神经元采用的激励函数,包括:

"purelin". 线性函数

"tansig" : 传递函数

"sigmoid". S型函数

"hardlim".

"custom": 用户自定义的函数

output.layer : 设置输出层神经元采用的激励函数,包括:

"purelin". 线性函数

"tansig" : 传递函数

"sigmoid". S型函数

"hardlim".

"custom": 用户自定义的函数

method

: 设置训练方法即权重更新时所采用的方法。

ADAPTgd : 自适应梯度下降法

ADAPTgdwm : 含有动量的自适应梯度下降法

BATCHgd : 批梯度下降

BATCHgdwm : 含有动量的批梯度下降法

train(net,

P, T, Pval=NULL, Tval=NULL, error.criterium="LMS",

report=TRUE,

n.shows, show.step,

Stao=NA,prob=NULL,n.threads=0L)

作用:对于给定的数据集或者训练集,用于修改链接权重值和误差值。更好的用于非线性拟合。

net :

newff 产生的对象

P :

训练集的输入值

T :

训练集的输出值

Pval

: 检验数据集的输入值,用于检测是否过拟合提前停止训练

Tval

: 检验数据集的输出值

error.criterium : 同newff参数

Stao:同newff参数

report : 逻辑类型,用于设置在训练过程是否有图形/文字信息提示

n.shows

:用于设置显示report的次数,与show.step 共同决定迭代的次数,总迭代次数等于两者的乘积

show.step

: 从源码中得知每次训练的次数,总的迭代次数等于n.shows * show.step 之积

prob: 在进行重采样时设置的概率

sim(net,P,...)

用于网络仿真。

  • 0
    点赞
  • 0
    评论
  • 2
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
©️2021 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值