R语言train函数训练模型报错(Error in summary.connection(connection) : 链结不对)

R语言train函数训练模型报错

报错内容

Error in summary.connection(connection) : 链结不对

set.seed(825)
> gbmFit1 <- train(Class ~ ., data = training, 
+                  method = "gbm", 
+                  trControl = fitControl,
+                  ## This last option is actually one
+                  ## for gbm() that passes through
+                  verbose = FALSE)
Error in summary.connection(connection) : 链结不对

原因分析

在使用boosting(助推法)之前,使用svm算法训练模型并使用foreach并行化加速时导致环境变量冗余,所以清除即可。

env <- foreach:::.foreachGlobals
rm(list=ls(name=env), pos=env)
1] "allData"          "bYears"           "cl"              
 [4] "ctrl0"            "dpmt"             "dummies"         
 [7] "env"              "factorForm"       "factorPredictors"
[10] "fitControl"       "fullset"          "grantData"       
[13] "grantYear"        "highCorr"         "holdout2008"     
[16] "inTrain"          "inTraining"       "investCount"     
[19] "investCountry"    "investDept"       "investDOB"       
[22] "investDuration"   "investFaculty"    "investGrants"    
[25] "investLang"       "investPhD"        "investPub"       
[28] "isNZV"            "nms"              "noZV"            
[31] "people"           "pre2008"          "pre2008Data"     
[34] "predCorr"         "raw"              "reducedset"      
[37] "RFCDcount"        "SEOcount"         "shortnames"      
[40] "Sonar"            "startTime"        "summarized"      
[43] "svmrGrid"         "temp"             "test2008"        
[46] "testing"          "tmp"              "totalPub"        
[49] "training"         "training2"        "vertical"        
[52] "year2008"         "year2008Data" 

关于R语言train函数错误的调试就到这里为止,如果各位同学有遇到其他的错误,欢迎在评论区留言,一起解决!

### YOLOv10n.pt 模型训练时 `torch.cat` 错误分析 在使用 YOLOv10n.pt 进行自定义数据集训练的过程中,如果遇到 `torch.cat expected a non-empty list of Tensors` 的错误,通常是因为输入张量列表为空或者某些操作未正确执行。以下是可能的原因以及解决方案: #### 可能原因 1:数据加载器配置不当 当构建数据集时,`build_dataset` 函数中的参数设置可能导致部分图像无法被正确读取或处理。例如,在引用中提到的修改 `rect=mode == 'val'` 改为 `rect=False`[^2],这可能会导致一些不兼容的情况。 **解决方案** 确认数据集中是否存在损坏的图片或其他异常情况。可以通过以下方式验证: ```python from ultralytics import YOLO model = YOLO('yolov10n.pt') dataset_path = 'path/to/your/dataset' train_loader = model.trainer.get_dataloader(dataset_path) for batch in train_loader: images, labels = batch if not isinstance(images, torch.Tensor) or len(images) == 0: raise ValueError("Empty tensor detected in data loader.") ``` --- #### 可能原因 2:模型架构与数据维度不匹配 YOLOv10 使用了特定的主干网络(Backbone),如 MobileViTv2 改进版。如果自定义的数据集尺寸不符合预期,可能会引发形状不一致的问题。 **解决方案** 调整数据预处理逻辑以确保输入到模型中的张量具有正确的形状。可以在 `yolov10m-C2fCIB_AssemFormer.yaml` 文件中指定输入大小并重新生成模型文件[^1]。例如: ```yaml # yolov10m-C2fCIB_AssemFormer.yaml input_size: [640, 640] backbone: mobilevit_v2 neck: csp_pan head: decoupled_head ``` 随后通过命令重新初始化模型: ```bash yolo detect export model=yolov10m-C2fCIB_AssemFormer.yaml imgsz=640 ``` --- #### 可能原因 3:损失计算阶段问题 在检测任务中,目标框的数量可能不足或标注有误,从而导致 `torch.cat` 接收空列表作为输入。 **解决方案** 检查标签文件是否符合 COCO 或其他支持的标准格式,并清理掉无有效目标框的样本。可以利用脚本批量校验: ```python import yaml with open('path/to/data.yaml', 'r') as f: dataset_config = yaml.safe_load(f) label_dir = dataset_config['train'] if label_dir.endswith('.txt'): with open(label_dir, 'r') as lf: lines = lf.readlines() for line in lines: parts = line.strip().split(' ') if len(parts) < 5: # 至少应含类别ID和边界框坐标 print(f"Invalid annotation found: {line}") ``` --- #### 总结代码片段 综合上述方法,可尝试运行如下调试流程来定位具体问题: ```python import torch from ultralytics import YOLO try: model = YOLO('yolov10n.pt') results = model.train(data='path/to/data.yaml', epochs=10) except Exception as e: if "expected a non-empty list of Tensors" in str(e): print("Error caused by empty tensors during concatenation.") # Debugging steps outlined above should be followed. else: raise e ``` --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

本人已四

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值