矩阵范数计算例题_第九课:矩阵的范数

08486eeec9fff457a15c905231b089c6.png

在所有的数学思想中,归纳和演绎永远都是站在舞台中最光鲜的位置。我们上一节介绍了向量

的范数之后,这一节就来介绍矩阵的范数。我们可以看成向量是特殊的矩阵,矩阵是推广了的

向量。

矩阵满足线性空间的8条性质,所以我们可以说矩阵是线性空间。同样的我们可以验证向量也

满足线性空间的要求,这是矩阵和向量的共性。我们还记得在Kronecker积那一节中,介绍了

Vector转化的概念。m×n维矩阵可以转化成m×n维空间的向量。因此我们在学习过程中可以将

矩阵和向量结合起来学习。

我们不要忘记,引入范数的目的是为了进行度量。就如同我们之前介绍内积的概念一样。所有

的向量空间都可以定义内积空间,引入内积不是目的,引入内积之后,就可以引入夹角长度等

概念。这个空间就变得可以度量了。

额外说一点的是并不是只有线性空间才有范数的定义,任意空间都可以引进范数(这样的空间

我们称为赋范空间),使得这个空间可以被度量。如希尔伯特空间等。

矩阵范数的定义

好了,下面我们进入本节的主要内容。首先介绍一下矩阵范数的定义:

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值