t 检验(Students test,又称学生检验)以t 分布为基础,主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。t 检验是应用较多的一种假设检验方法。
t检验的应用条件:
1.各样本均来自于其总体,且为随机抽取样本
2.各样本均来自于正态分布或近正态分布总体
3.总体均数已知,样本均数及标准差可得
4.两独立样本均数比较时,要求两总体方差相等。
t检验主要分类
t 检验可分为单样本(单总体)检验和两独立样本检验以及配对样本检验
单样本t 检验
样本均数与总体均数比较的t检验,叫做单样本资料的t检验。实际上是推断样本所在总体的均数μ与已知总体均数(通常为理论值或标准值)有无差别。单样本t检验也可以理解为是一个样本平均数与一个已知的总体平均数的差异是否显著。
当总体分布是正态分布,如总体标准差未知且样本容量小于30,那么样本平均数与总体平均数的离差统计量呈t分布。单样本t检验的统计量计算公式为:
其中分子表示样本均数与总体均值
的差值,分母表示样本均数的标准误。t统计量用标准误来度量样本均数
与总体均值
的差距,没有量纲。其t值越小,越有利于零假设。
根据t分布理论,H0 成立时,t统计量服从自由度为v = n-1的t分布。因此,只需要根据计算出的t统计量,来确定相应的P值,进而做出统计推断即可。
因此单样本t检验的前需要规定一个“小事件”概率α作为检验水准,如果P值小于α,则拒绝H0,接受H1;反之接受H0,拒绝H1。
因此单样本t检验的步骤如下:
1.建立检验