泊松分布的期望和方差_最大熵和概率分布

本文介绍了离散型随机分布,如伯努利、二项、几何、泊松和负二项分布,以及连续型随机分布的均匀和正态分布。重点讨论了泊松分布的期望和方差,并通过最大熵理论解释了概率分布的形成。还涉及了伯努利分布的推导和正态分布的约束条件。
摘要由CSDN通过智能技术生成

我们需要描述一组数据时候,本质上需要描述每一个点。但是如果我们可以用分布去表示这些数据,就只需要均值或者方差分布参数,大大节省了存储空间。

离散型随机分布

伯努利分布:一次实验,结果只有两种结果。$p(k)=p^k(1-p)^{(1-k)}, kin{0, 1}$,期望:$p$,方差:$p(1-p)$

二项分布:n次伯努利实验正好得到k次成功的概率,单次成功的概率为p。当n=1的时候退化到伯努利分布。当p=0.5的时候,整体上和正态分布图形类似。$p(k)=C_n^kp^k(1-p)^{n-k}$,期望:$np$,方差:$np(1-p)$

几何分布:进行n次伯努利实验,在获取成功前需要进行多少次实验。分布图形是越往前概率越大,$p(k)=(1-p)^{k-1}p$, 期望$frac{1}{p}$, 方差是$frac{(1-p)}{p^k}$

泊松分布:单位时间内独立事件发生次数的概率分布,它是二项分布n很大而p很小时的极限。泊松分布可以把单位时间切成n次,每次成功的概率为p,那么单位时间内出现k次的概率就是二项分布,所以泊松分布是二项分布的一种极限形式。它的分布图形也和二项分布类似,特别是n很大而p很小时。$p(k)=frac{e^{-lambda}lambda^k}{k!}$, 期望和方差都是$lambda$,其中k是发生的次数,$lambda$是发生的平均次数,当$lambda>=20$时,泊松分布趋向于正态分布。

指数分布:对应于泊松分布,指数分布是指两次独立事件发生的时间间隔的概率分布。 $p(k)=lambda e^{-lambda k}$

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值