泊松分布
已知泊松分布
P
(
x
=
k
)
=
λ
k
e
−
λ
k
!
P(x=k)=\frac{\lambda^{k}e^{-\lambda}}{k!}
P(x=k)=k!λke−λ
期望
E
(
x
)
=
∑
k
=
0
∞
k
λ
k
e
−
λ
k
!
E(x)=\sum_{k=0}^∞k\frac{\lambda^{k}e^{-\lambda}}{k!}
E(x)=k=0∑∞kk!λke−λ
因为有当k=0时:
0
λ
0
e
−
λ
0
!
=
0
0\frac{\lambda^{0}e^{-\lambda}}{0!}=0
00!λ0e−λ=0
则:
E
(
x
)
=
∑
k
=
1
∞
k
λ
k
e
−
λ
k
!
E(x)=\sum_{k=1}^∞k\frac{\lambda^{k}e^{-\lambda}}{k!}
E(x)=k=1∑∞kk!λke−λ
E
(
x
)
=
λ
∑
k
=
1
∞
λ
k
−
1
e
−
λ
(
k
−
1
)
!
E(x)=\lambda\sum_{k=1}^∞\frac{\lambda^{k-1}e^{-\lambda}}{(k-1)!}
E(x)=λk=1∑∞(k−1)!λk−1e−λ
E
(
x
)
=
λ
∑
k
=
0
∞
λ
k
e
−
λ
k
!
E(x)=\lambda\sum_{k=0}^∞\frac{\lambda^{k}e^{-\lambda}}{k!}
E(x)=λk=0∑∞k!λke−λ
其中:
∑
k
=
0
∞
λ
k
e
−
λ
k
!
\sum_{k=0}^∞\frac{\lambda^{k}e^{-\lambda}}{k!}
k=0∑∞k!λke−λ
是泊松分布所有的概率之和为1。
因此:
E
(
x
)
=
λ
E(x)=\lambda
E(x)=λ
方差
D
(
x
)
=
E
(
(
x
−
E
(
x
)
)
2
)
=
E
(
x
2
)
−
E
(
x
)
2
D(x)=E((x-E(x))^2)=E(x^2)-E(x)^2
D(x)=E((x−E(x))2)=E(x2)−E(x)2
其中:
E
(
x
2
)
=
∑
k
=
0
∞
k
2
λ
k
e
−
λ
k
!
E(x^2)=\sum_{k=0}^∞k^2\frac{\lambda^{k}e^{-\lambda}}{k!}
E(x2)=k=0∑∞k2k!λke−λ
同理,当k=0时,此累加项为0。
则有:
E
(
x
2
)
=
∑
k
=
1
∞
k
2
λ
k
e
−
λ
k
!
E(x^2)=\sum_{k=1}^∞k^2\frac{\lambda^{k}e^{-\lambda}}{k!}
E(x2)=k=1∑∞k2k!λke−λ
E
(
x
2
)
=
λ
∑
k
=
1
∞
k
λ
k
−
1
e
−
λ
(
k
−
1
)
!
E(x^2)=\lambda\sum_{k=1}^∞k\frac{\lambda^{k-1}e^{-\lambda}}{(k-1)!}
E(x2)=λk=1∑∞k(k−1)!λk−1e−λ
其中:
∑
k
=
1
∞
k
λ
k
−
1
e
−
λ
(
k
−
1
)
!
=
∑
k
=
0
∞
(
k
+
1
)
λ
k
e
−
λ
k
!
=
E
(
x
+
1
)
=
E
(
x
)
+
E
(
1
)
=
λ
+
1
\sum_{k=1}^∞k\frac{\lambda^{k-1}e^{-\lambda}}{(k-1)!}=\sum_{k=0}^∞(k+1)\frac{\lambda^{k}e^{-\lambda}}{k!}=E(x+1)=E(x)+E(1)=\lambda+1
k=1∑∞k(k−1)!λk−1e−λ=k=0∑∞(k+1)k!λke−λ=E(x+1)=E(x)+E(1)=λ+1
E
(
x
2
)
=
λ
(
λ
+
1
)
=
λ
2
+
λ
E(x^2)=\lambda(\lambda+1)=\lambda^2+\lambda
E(x2)=λ(λ+1)=λ2+λ
D
(
x
)
=
E
(
x
2
)
−
E
(
x
)
2
=
λ
2
+
λ
−
λ
2
=
λ
D(x)=E(x^2)-E(x)^2=\lambda^2+\lambda-\lambda^2=\lambda
D(x)=E(x2)−E(x)2=λ2+λ−λ2=λ