泊松分布期望和方差推导

博客详细解析了泊松分布的期望和方差的数学推导过程,通过逐步展开求和公式,证明了泊松分布的期望值E(x)=λ以及方差D(x)=λ。内容适合统计学和概率论的学习者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

泊松分布

已知泊松分布
P ( x = k ) = λ k e − λ k ! P(x=k)=\frac{\lambda^{k}e^{-\lambda}}{k!} P(x=k)=k!λkeλ

期望

E ( x ) = ∑ k = 0 ∞ k λ k e − λ k ! E(x)=\sum_{k=0}^∞k\frac{\lambda^{k}e^{-\lambda}}{k!} E(x)=k=0kk!λkeλ
因为有当k=0时:
0 λ 0 e − λ 0 ! = 0 0\frac{\lambda^{0}e^{-\lambda}}{0!}=0 00!λ0eλ=0
则:
E ( x ) = ∑ k = 1 ∞ k λ k e − λ k ! E(x)=\sum_{k=1}^∞k\frac{\lambda^{k}e^{-\lambda}}{k!} E(x)=k=1kk!λkeλ
E ( x ) = λ ∑ k = 1 ∞ λ k − 1 e − λ ( k − 1 ) ! E(x)=\lambda\sum_{k=1}^∞\frac{\lambda^{k-1}e^{-\lambda}}{(k-1)!} E(x)=λk=1(k1)!λk1eλ
E ( x ) = λ ∑ k = 0 ∞ λ k e − λ k ! E(x)=\lambda\sum_{k=0}^∞\frac{\lambda^{k}e^{-\lambda}}{k!} E(x)=λk=0k!λkeλ
其中:
∑ k = 0 ∞ λ k e − λ k ! \sum_{k=0}^∞\frac{\lambda^{k}e^{-\lambda}}{k!} k=0k!λkeλ
是泊松分布所有的概率之和为1。
因此:
E ( x ) = λ E(x)=\lambda E(x)=λ

方差

D ( x ) = E ( ( x − E ( x ) ) 2 ) = E ( x 2 ) − E ( x ) 2 D(x)=E((x-E(x))^2)=E(x^2)-E(x)^2 D(x)=E((xE(x))2)=E(x2)E(x)2
其中:
E ( x 2 ) = ∑ k = 0 ∞ k 2 λ k e − λ k ! E(x^2)=\sum_{k=0}^∞k^2\frac{\lambda^{k}e^{-\lambda}}{k!} E(x2)=k=0k2k!λkeλ
同理,当k=0时,此累加项为0。
则有:
E ( x 2 ) = ∑ k = 1 ∞ k 2 λ k e − λ k ! E(x^2)=\sum_{k=1}^∞k^2\frac{\lambda^{k}e^{-\lambda}}{k!} E(x2)=k=1k2k!λkeλ
E ( x 2 ) = λ ∑ k = 1 ∞ k λ k − 1 e − λ ( k − 1 ) ! E(x^2)=\lambda\sum_{k=1}^∞k\frac{\lambda^{k-1}e^{-\lambda}}{(k-1)!} E(x2)=λk=1k(k1)!λk1eλ
其中:
∑ k = 1 ∞ k λ k − 1 e − λ ( k − 1 ) ! = ∑ k = 0 ∞ ( k + 1 ) λ k e − λ k ! = E ( x + 1 ) = E ( x ) + E ( 1 ) = λ + 1 \sum_{k=1}^∞k\frac{\lambda^{k-1}e^{-\lambda}}{(k-1)!}=\sum_{k=0}^∞(k+1)\frac{\lambda^{k}e^{-\lambda}}{k!}=E(x+1)=E(x)+E(1)=\lambda+1 k=1k(k1)!λk1eλ=k=0(k+1)k!λkeλ=E(x+1)=E(x)+E(1)=λ+1
E ( x 2 ) = λ ( λ + 1 ) = λ 2 + λ E(x^2)=\lambda(\lambda+1)=\lambda^2+\lambda E(x2)=λ(λ+1)=λ2+λ
D ( x ) = E ( x 2 ) − E ( x ) 2 = λ 2 + λ − λ 2 = λ D(x)=E(x^2)-E(x)^2=\lambda^2+\lambda-\lambda^2=\lambda D(x)=E(x2)E(x)2=λ2+λλ2=λ

泊松分布是统计概率论中的一个重要概念,它描述了在固定时间或空间间隔内,某事件发生的次数的概率分布。在实际应用中,泊松分布广泛用于电信网络、保险业务以及各种服务系统中,用以预测在单位时间或单位面积内事件发生的次数。例如,在一定时间内到达服务台的顾客数量、某时间段内发生故障的设备数量等。 参考资源链接:[北邮概率论随机过程期末考试题详解及答案](https://wenku.csdn.net/doc/8b3f3rdsm7?spm=1055.2569.3001.10343) 泊松分布的概率质量函数(PMF)为:P(X=k) = (λ^k * e^-λ) / k!,其中λ是单位时间(或单位面积)内事件发生的平均次数,k是非负整数,代表在给定时间或空间内事件发生的次数。 泊松分布期望值E(X)方差Var(X)都等于参数λ。这意味着在泊松分布中,事件发生的平均频率频率的波动大小是一致的。因此,如果已知某一事件在一定条件下的平均发生次数,就可以直接使用泊松分布来进行预测计算。 在计算泊松分布的数学期望时,我们直接利用期望值的定义:E(X) = Σ[k * P(X=k)],由于泊松分布的对称性,可以简化为E(X) = λ。同理,方差Var(X) = E(X^2) - [E(X)]^2,而E(X^2) = Σ[k^2 * P(X=k)],在泊松分布中,可以推导出E(X^2) = λ^2 + λ,因此Var(X) = λ^2 + λ - λ^2 = λ。 通过掌握泊松分布期望方差的计算方法,以及其在随机事件中的应用,可以帮助我们更好地理解处理现实世界中的离散型随机现象。对于想要深入理解掌握这一知识的学生而言,这份资料《北邮概率论随机过程期末考试题详解及答案》将是极好的复习材料。它不仅涵盖了相关的填空题,还提供了详细的解题过程答案,帮助学生巩固知识点,并指导他们在实际问题中如何应用这些理论知识。 参考资源链接:[北邮概率论随机过程期末考试题详解及答案](https://wenku.csdn.net/doc/8b3f3rdsm7?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值