6阶群的非平凡子群_简明算术教程——第二章 群——第9节 可解群

本文介绍了可解群的概念及其性质,包括与交换群的关系、换位子群的性质、正规列和合成列。通过定理证明了有限群存在合成列、可解群的子群和商群也是可解群,以及非Abel单群的不可解性。此外,还讨论了群的阶与可解性的关系,并提及了 Burnside 猜想。
摘要由CSDN通过智能技术生成

本节我们简单介绍一类重要的有限群:可解群。这个名称来源于高于四次的一般代数方程根式不可解,在今后的章节将会进行详细的介绍。

我们知道,多数的群都是非交换的。辨别一个群是否为交换群(Abel群),或者与交换群相近的程度可以有许多种方法和标准。比如说:群G是Abel群当且仅当C(G)=G。所以群G的中心C(G)越大,可以认为G越接近Abel群。又比如说:元素g是中心元素当且仅当g与自身共轭,所以有限群G为Abel群当且仅当G中的每一个元素均是一个共轭类,即共轭类数量达到了最大值|G|。所以一个有限群的共轭类数越大,也可以说明它越接近Abel群。现在我们再给出一个标准。设

equation?tex=a%E3%80%81b%5Cin+G ,考虑G的换位子群

equation?tex=G%5E%7B%281%29%7D%3D%5BG%2CG%5D ,由于

equation?tex=ab%3Dba%5CLeftrightarrow%5Ba%2Cb%5D%3Daba%5E%7B-1%7Db%5E%7B-1%7D%3Dbaa%5E%7B-1%7Db%5E%7B-1%7D%3D1 ,因此G是Abel群当且仅当

equation?tex=G%5E%7B%281%29%7D%3D1 。群

equation?tex=G%5E%7B%281%29%7D 越大则不为1的换位子越多,表示G离Abel群越远。

现在我们来了解更多关于换位子群的性质。

(定理2.9.1)

equation?tex=G%5E%7B%281%29%7D%5Ctriangleleft+G

证明:对于

equation?tex=g%2Ca%2Cb%5Cin+G ,显然

equation?tex=g%5Ba%2Cb%5Dg%5E%7B-1%7D%3D%5Bgag%5E%7B-1%7D%2Cgbg%5E%7B-1%7D%5D ,所以

equation?tex=gG%5E%7B%281%29%7Dg%5E%7B-1%7D%5Cleqslant+G%5E%7B%281%29%7D ,于是

equation?tex=G%5E%7B%281%29%7D%5Cleqslant+g%5E%7B-1%7DG%5E%7B%281%29%7Dg ,由于g可为G中的任意元素,所以也有

equation?tex=G%5E%7B%281%29%7D%5Cleqslant+gG%5E%7B%281%29%7Dg%5E%7B-1%7D ,于是

equation?tex=gG%5E%7B%281%29%7Dg%5E%7B-1%7D%3DG%5E%7B%281%29%7D 。这就表明

equation?tex=G%5E%7B%281%29%7D%5Ctriangleleft+G 。证毕。

(定理2.9.2)若

equation?tex=N%5Ctriangleleft+G ,则

equation?tex=G%2FN 是Abel群当且仅当

equation?tex=G%5E%7B%281%29%7D%5Cleqslant+N

证明:若

equation?tex=G%2FN 是Abel群,则对每个

equation?tex=a%2Cb%5Cin+G 都有

equation?tex=a%5E%7B-1%7Db%5E%7B-1%7DN%3Db%5E%7B-1%7Da%5E%7B-1%7DN%5CRightarrow+aba%5E%7B-1%7Db%5E%7B-1%7DN%3DN ,于是

equation?tex=%5Ba%2Cb%5D%3Daba%5E%7B-1%7Db%5E%7B-1%7D%5Cin+N ,即

equation?tex=G%5E%7B%281%29%7D%5Cleqslant+N 。特别地,

equation?tex=G%2FG%5E%7B%281%29%7D 显然是Abel群。反过来,若

equation?tex=G%5E%7B%281%29%7D%5Cleqslant+N ,则根据第三同构定理得

equation?tex=G%2FN%5Csimeq%5Cfrac%7BG%2FG%5E%7B%281%29%7D%7D%7BN%2FG%5E%7B%281%29%7D%7D ,即

equation?tex=G%2FN 同构于

equation?tex=G%2FG%5E%7B%281%29%7D 的商群,从而必是Abel群。证毕。

现在记

equation?tex=G%5E%7B%281%29%7D%3DG%27%2CG%5E%7B%282%29%7D%3DG%5E%7B%281%29%27%7D%2C...%2CG%5E%7B%28i%29%7D%3DG%5E%7B%28i-1%29%27%7D%EF%BC%88i%5Cgeqslant2%EF%BC%89 。于是得到G的一个子群序列

equation?tex=G%5Ctriangleright+G%5E%7B%281%29%7D%5Ctriangleright+G%5E%7B%282%29%7D%5Ctriangleright...%5Ctriangleright+G%5E%7B%28i-1%29%7D%5Ctriangleright+G%5E%7B%28i%29%7D%5Ctriangleright...

其中每一个

equation?tex=G%5E%7B%28i%29%7D 都是前一个

equation?tex=G%5E%7B%28i-1%29%7D 的正规子群。

(定义2.9.1)群G叫做可解群,是指

equation?tex=n%5Cgeqslant1 使得

equation?tex=G%5E%7B%28n%29%7D%3D%5Cleft%5C%7B1%5Cright%5C%7D

每个Abel群都是可解群,因为此时

equation?tex=G%5E%7B%281%29%7D%3D%5Cleft%5C%7B1%5Cright%5C%7D 。更一般的我们有:

(定理2.9.3)可解群的子群和商群都是可解群。

证明:若

equation?tex=H%5Cleqslant+G ,设映射

equation?tex=%5Cvarphi%3AG%5Crightarrow+H

equation?tex=%5BG%3AH%5D 个陪集

equation?tex=g_%7Bi%7DH 的代表元

equation?tex=g_%7Bi%7D 都映为

equation?tex=1_%7BG%7D ,则总有

equation?tex=%5Cvarphi%28g_%7Bi%7Dhg_%7Bj%7Dh%27%29%3Dhh%27%3D%5Cvarphi%28h%29%5Cvarphi%28h%27%29%3D%5Cvarphi%28g_%7Bi%7Dh%29%5Cvarphi%28g_%7Bj%7Dh%27%29 ,所以

equation?tex=%5Cvarphi 是满同态。若

equation?tex=H%5Csimeq+G%2FQ ,则存在满同态

equation?tex=%5Cvarphi%3AG%5Crightarrow+G%2FQ ,显然

equation?tex=%5Cvarphi%28G%5E%7B%28i%29%7D%29%3DH%5E%7B%28i%29%7D ,则证毕。

(定理2.9.4)若

equation?tex=N%5Ctriangleleft+G ,则G可解

equation?tex=%5CLeftrightarrow N和G/N均可解。

证明:由定理2.9.3知

equation?tex=%5CRightarrow 成立。现设N和G/N均可解,来证明G可解。考虑满同态

equation?tex=%5Cvarphi%3AG%5Crightarrow+G%2FN ,由G/N的可解性可知有n使得

equation?tex=%5Cvarphi%28G%5E%7B%28n%29%7D%29%3D%28G%2FN%29%5E%7B%28n%29%7D%3D%5Cleft%5C%7B1%5Cright%5C%7D ,即

equation?tex=G%5E%7B%28n%29%7D%5Cleqslant+N ,由N可解知

equation?tex=G%5E%7B%28n%29%7D 也可解,从而有m使得

equation?tex=%28G%5E%7B%28n%29%7D%29%5E%7B%28m%29%7D%3DG%5E%7B%28n%2Bm%29%7D%3D%5Cleft%5C%7B1%5Cright%5C%7D 。于是G可解。证毕。

现在我们给出可解群的另一种辨别方法。

(定义2.9.2)设群G的有限多个子群组成的子群列

equation?tex=G%3DG_%7B0%7D%5Cgeqslant+G_%7B1%7D%5Cgeqslant+G_%7B2%7D+%5Cgeqslant...%5Cgeqslant+G_%7Bn%7D%3D%5Cleft%5C%7B1%5Cright%5C%7D 。如果每个

equation?tex=G_%7Bi%7D 均是

equation?tex=G_%7Bi-1%7D 的正规子群,则称它为正规列。如果正规列中

equation?tex=G_%7Bi-1%7D%2FG_%7Bi%7D 均是单群,则称它为合成列。一个正规列叫做可解列,是指

equation?tex=G_%7Bi-1%7D%2FG_%7Bi%7D 均为Abel群。

(定理2.9.5)有限群G必有合成列。

证明:我们只需令每个

equation?tex=G_%7Bi%7D 均是

equation?tex=G_%7Bi-1%7D 的极大非平凡正规子群即可。假定存在

equation?tex=G_%7Bi%7D

equation?tex=G_%7Bi-1%7D 的极大非平凡正规子群,而

equation?tex=G_%7Bi-1%7D%2FG_%7Bi%7D 不是单群,则设其有非平凡正规子群H,显然

equation?tex=%28G_%7Bi-1%7D%2FG_%7Bi%7D%29%5Ccap+G_%7Bi%7D%3D%5Cleft%5C%7B1_%7BG%7D%5Cright%5C%7D ,则

equation?tex=H%5Ccap+G_%7Bi%7D%3D%5Cleft%5C%7B1_%7BG%7D%5Cright%5C%7D ,那么由第二同构定理可得

equation?tex=G_%7Bi%7DH%2FG_%7Bi%7D%5Csimeq+H ,再由第三同构定理得

equation?tex=%5Cfrac%7BG_%7Bi-1%7D%2FG_%7Bi%7D%7D%7BH%7D%3D%5Cfrac%7BG_%7Bi-1%7D%2FG_%7Bi%7D%7D%7BG_%7Bi%7DH%2FG_%7Bi%7D%7D%5Csimeq%5Cfrac%7BG_%7Bi-1%7D%7D%7BG_%7Bi%7DH%7D+ ,所以

equation?tex=G_%7Bi%7D%3CG_%7Bi%7DH%5Ctriangleleft+G_%7Bi-1%7D ,这与

equation?tex=G_%7Bi%7D

equation?tex=G_%7Bi-1%7D 的极大非平凡正规子群矛盾。证毕。

(定理2.9.6)群G是可解群当且仅当G有可解列。

证明:充分性,若G可解,则有n使

equation?tex=G%5E%7B%28n%29%7D%3D%5Cleft%5C%7B1%5Cright%5C%7D 。而

equation?tex=G%5Ctriangleright+G%5E%7B%281%29%7D%5Ctriangleright...%5Ctriangleright+G%5E%7B%28n%29%7D%3D%5Cleft%5C%7B+1+%5Cright%5C%7D 是正规列,由定理2.9.2知

equation?tex=G%5E%7B%28i-1%29%7D%2FG%5E%7B%28i%29%7D 均为Abel群,所以这是可解列。必要性,若G有可解列

equation?tex=G%3DG_%7B0%7D%5Cgeqslant+G_%7B1%7D%5Cgeqslant...%5Cgeqslant+G_%7Bn%7D%3D%5Cleft%5C%7B1%5Cright%5C%7D ,则

equation?tex=G_%7Bi-1%7D%2FG_%7Bi%7D 均为Abel群,由定理2.9.2知

equation?tex=G_%7Bi-1%7D%5E%7B%281%29%7D%5Cleqslant+G_%7Bi%7D ,所以若有

equation?tex=G%5E%7B%28i%29%7D%5Cleqslant+G_%7Bi%7D ,则有

equation?tex=G%5E%7B%28i%2B1%29%7D%5Cleqslant+G_%7Bi%7D%5E%7B%281%29%7D%5Cleqslant+G_%7Bi%2B1%7D ,那么根据第一归纳法,若要证明

equation?tex=G%5E%7B%28n%29%7D%5Cleqslant+G_%7Bn%7D ,则只需确保

equation?tex=G%5E%7B%281%29%7D%5Cleqslant+G_%7B1%7D ,而由

equation?tex=G_%7Bi-1%7D%5E%7B%281%29%7D%5Cleqslant+G_%7Bi%7D 知这是显然的,所以

equation?tex=G%5E%7B%28n%29%7D%5Cleqslant+G_%7Bn%7D%3D%5Cleft%5C%7B1%5Cright%5C%7D ,即G是可解群。证毕。

(定理2.9.7)有限群G可解当且仅当G存在正规列

equation?tex=G%3DG_%7B0%7D%5Ctriangleright+G_%7B1%7D%5Ctriangleright+...%5Ctriangleright++G_%7Bn%7D%3D%5Cleft%5C%7B1%5Cright%5C%7D ,使得

equation?tex=G_%7Bi-1%7D%2FG_%7Bi%7D 均是素数阶循环群。

证明:充分性,检查定义2.9.2我们可知在G的可解列中

equation?tex=G_%7Bi-1%7D%2FG_%7Bi%7D 均为Abel群,若

equation?tex=G_%7Bi-1%7D%2FG_%7Bi%7D 为单群,则证毕,所以

equation?tex=G_%7Bi-1%7D%2FG_%7Bi%7D 不是单群,根据定理2.8.1则必定存在正规子群

equation?tex=H 使得

equation?tex=%5Cfrac%7BG_%7Bi-1%7D%2FG_%7Bi%7D%7D%7BH%7D 为素数阶循环群,再由定理2.9.5可知

equation?tex=%5Cfrac%7BG_%7Bi-1%7D%2FG_%7Bi%7D%7D%7BH%7D%5Csimeq%5Cfrac%7BG_%7Bi-1%7D%7D%7BG_%7Bi%7DH%7D+ ,则只需考虑

equation?tex=G_%7Bi-1%7D 的正规子群

equation?tex=G_%7Bi%7DH ,根据定理2.9.3,

equation?tex=G_%7Bi%7DH 是可解的,然后重复上述论证即可。必要性,这是显然的,因为素数阶循环群均为Abel群。证毕。

(定理2.9.8)每个非Abel单群都是不可解的。

证明:这是定理2.9.7的直接推论。

(定理2.9.9)当

equation?tex=n%5Cgeqslant5 时,

equation?tex=S_%7Bn%7D 不可解。

证明:根据定理2.9.3的逆否命题可知若G存在子群不可解,则G不可解,而

equation?tex=A_%7Bn%7D

equation?tex=S_%7Bn%7D 的非Abel单子群,根据定理2.9.8,它不可解,所以

equation?tex=S_%7Bn%7D 不可解。

(定理2.9.10)Burnside猜想:每个奇数阶的有限群都是可解群。

证明:这个猜想在1963年由W.Feit和J.Thompson所证明,论文长达255页。。。。所以这里就不放了。

本节完。

习题:

1.证明:若G为非Abel单群,则G'=G。

2.证明:

equation?tex=D_%7Bn%7D 都是可解群。

3.证明:若p和q为素数,且

equation?tex=p%3Eq ,则pq阶群可解。

4.证明:

equation?tex=S_%7B3%7D

equation?tex=S_%7B4%7D 是可解群。

5.设p,q,r均为素数(不必不同),试证pqr阶群都是可解群。

6.证明:若群G有一个指数为4的正规子群,则G也有一个指数为2的正规子群。(提示:可以在作者的回答里找到)

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值