6阶群的非平凡子群_子群和Lagrange定理

本文介绍了群论中的子群概念,特别是6阶群的非平凡子群,并探讨了子群的性质,如真子群、平凡子群。通过Lagrange定理,阐述了子群阶数与群阶数之间的关系,展示了群的右陪集分解及其指数。此外,还讨论了元素阶的概念以及相关定理。
摘要由CSDN通过智能技术生成

子群设$(G,\cdot)$是群,$A\subset G$是$G$的子集,如果$(A,\cdot)$也构成群,那么称$A$是$G$的子群,记作$A\leq G$,且若$A\neq G$,则称$A$为$G$的真子群,记作$A

对了验证群$G$的子集$A$是否是$G$的子群,仅需验证$A$对$G$中的运算是否构成群即可,即仅需验证如下三条:

(1)幺元$1_G\in A$;

(2)$a\in A\Rightarrow a^{-1}\in A$;

(3)$a,b\in A\Rightarrow ab\in A$.

也可以利用如下的判定定理:若$A\subset G$,则$A\leq G$当且仅当$$ab^{-1}\in A,\forall a,b\in A$$次判定定理的证明是显然的.

例如:设$n\in\mathbb N^*$,定义$n\mathbb Z=\{na:a\in\mathbb Z\}$,显然$n\mathbb Z$是$\mathbb Z$的子群,但是$n\mathbb Z\simeq\mathbb Z$.直观上来理解即:子群未必比原来的群小!

一个显然的事实是$\{1\},G$也是群$G$的子群,称之为平凡子群,其他的子群称为非平凡子群.

再者前面提到的例子$\mathrm{GL}_{n}(\mathbb C),\mathrm{SL}_{n}(\mathbb C)$,显然有$\mathrm{SL}_{n}(\mathbb C)\leq\mathrm{GL}_{n}(\mathbb C)$.

一个自然的问题,若$A,B\leq G$,那么 $A\cap B,A\cup B$以及$AB$是否仍然是$G$的子群呢?我们有:

设$A,B\leq G$,则:

(1)$A\cap B\leq G$;

(2)$A\cup B\leq G$当且仅当$A\leq B$或$B\leq A$;(一个显然的推论是群不能表示成两个真子群之并)

(3)$AB\leq G$当且仅当$AB=

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值