同指数幂相减公式_同底指数加减运算法则

本文详细阐述了指数运算的基本规则,包括同底数幂的乘法(底数不变,指数相加)、除法(指数相减)、加减法的合并,以及幂的乘方和特殊情况如0次幂和负指数幂的处理。通过实例解析和记忆口诀,帮助理解并掌握指数运算的高效计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

直接是无法相加减的,可以将指数高的那个数分成两个同底指数的乘积,按照合并同类项的方式进行加减。比如22+2^1的3=22+2^1×22=(1+2^1)×22。

乘除法则

乘法:底数不变,指数相加;除法:底数不变,指数相减;加法和减法:合并同类项。

a?-a2=a2a3-1=a2a-1a2+a+1

乘法

(1)同底数幂相乘,底数不变,指数相加:a^m×a^n=a^m+n)(m、n都是整数)。即幂的乘方,底数不变,指数相加。

如a^5·a^2=a^5+2=a^7。如a的负二次方乘a的负三次方等于a的负五次方。a的0次方乘a的0次方等于a的0次方。

(如不是同底数,应先变成同底数,注意符号)

(2)1·同底数幂是指底数相同的幂。

如(-2)的二次方与(-2)的五次方

除法

同底数幂相除,底数不变,指数相减:a^m÷a^n=a^m-n(m、n都是整数且a≠0)。

如a^5÷a^2=a^5-2=a^3,说明:a^m是a的m次方,a^n是a的n次方,a^m+n是a的m+n次方。

记忆口决

有理数的指数幂,运算法则要记住。

指数加减底不变,同底数幂相乘除。

指数相乘底不变,幂的乘方要清楚。

积商乘方原指数,换底乘方再乘除。

非零数的零次幂,常值为1不糊涂。

负整数的指数幂,指数转正求倒数。

看到分数指数幂,想到底数必非负。

乘方指数是分子,根指数要当分母。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值