不是方阵有逆矩阵吗_矩阵概述

文章目录:

  • 矩阵定义

  • 矩阵运算

  • 矩阵的秩

  • 行列式

  • 逆矩阵

  • 参考

矩阵定义

一个m×n的矩阵是一个由m行n列元素排列成的矩形阵列,矩阵里的元素可以是数字、符号或数学式。以下是一个由6个数构成的2行3列的矩阵:

24d33a58-d63c-eb11-8da9-e4434bdf6706.svg

对于m×n的矩阵,如果m=n,则这样的矩阵叫做方阵,对于一般的矩阵,可以表示为:

28d33a58-d63c-eb11-8da9-e4434bdf6706.svg

有时候为了指明所讨论的矩阵的级数,可以把m×n矩阵写成2dd33a58-d63c-eb11-8da9-e4434bdf6706.svg或者35d33a58-d63c-eb11-8da9-e4434bdf6706.svg。数3dd33a58-d63c-eb11-8da9-e4434bdf6706.svg41d33a58-d63c-eb11-8da9-e4434bdf6706.svg称为矩阵A的元素,i称为元素45d33a58-d63c-eb11-8da9-e4434bdf6706.svg的行指标,j称为列指标。

矩阵运算

加减法

两个矩阵的加法是多元组加法的扩展,如果有两个矩阵4fd33a58-d63c-eb11-8da9-e4434bdf6706.svg54d33a58-d63c-eb11-8da9-e4434bdf6706.svg,则这两个矩阵的加法可以表示为:

58d33a58-d63c-eb11-8da9-e4434bdf6706.svg

矩阵的加法就是矩阵对应的元素相加,当然相加的矩阵必需要有相同的行数和列数。由于矩阵的加法归结为它们的元素的加法,也就是数的加法,所以矩阵加法有如下性质:

  • 结合律:59d33a58-d63c-eb11-8da9-e4434bdf6706.svg ;

  • 交换律:5ad33a58-d63c-eb11-8da9-e4434bdf6706.svg

元素全为零的矩阵,称为零矩阵,记为5cd33a58-d63c-eb11-8da9-e4434bdf6706.svg,在不致引起混淆的时候,可以简单地记为O。显然,对所有的矩阵A,有A+O=A。

矩阵

5fd33a58-d63c-eb11-8da9-e4434bdf6706.svg

称为矩阵A的负矩阵,记为60d33a58-d63c-eb11-8da9-e4434bdf6706.svg,显然64d33a58-d63c-eb11-8da9-e4434bdf6706.svg。矩阵的减法定义为66d33a58-d63c-eb11-8da9-e4434bdf6706.svg

乘法

设矩阵67d33a58-d63c-eb11-8da9-e4434bdf6706.svg68d33a58-d63c-eb11-8da9-e4434bdf6706.svg,那么矩阵69d33a58-d63c-eb11-8da9-e4434bdf6706.svg,其中

6ad33a58-d63c-eb11-8da9-e4434bdf6706.svg

称为A与B的乘积,记为C=AB。

由矩阵乘法的定义可以看出,矩阵A与B的乘积C的第i行第j列的元素等于第一个矩阵的第i行与第二个矩阵B的第j列的对应元素乘积的和。当然,在乘积的定义中,要求第二个矩阵的行数与第一个矩阵的列数相等。

举个例子,设A、B两个矩阵如下所示

6dd33a58-d63c-eb11-8da9-e4434bdf6706.svg

那么:

72d33a58-d63c-eb11-8da9-e4434bdf6706.svg

矩阵C的第一行第二列的元素-14是矩阵A的第一行元素与矩阵B的第二列对应元素乘积之和,即1×0+0×2+(-4)×3+2×(-1)=-14。矩阵的乘法适合结合律,即有76d33a58-d63c-eb11-8da9-e4434bdf6706.svg。矩阵的乘法不适合交换律,即一般来说7bd33a58-d63c-eb11-8da9-e4434bdf6706.svg,这是由于一方面在乘积中要求第一个因子的列数等于第二个因子的行数,否则没有意义。即使当AB有意义时,BA不一定有意义。另一方面即使AB与BA都有意义,它们的级数也不一定相等。此外,矩阵乘法还有一个特点,两个不为零的矩阵的乘积可以是零。矩阵乘法的消去律不成立,即当81d33a58-d63c-eb11-8da9-e4434bdf6706.svg时,不一定有B=C。

矩阵的乘法和加法适合分配律,即满足等式85d33a58-d63c-eb11-8da9-e4434bdf6706.svg89d33a58-d63c-eb11-8da9-e4434bdf6706.svg。对于主对角线上的元素全是1,其余元素全是0的n×n矩阵,称为n级单位矩阵,记为8fd33a58-d63c-eb11-8da9-e4434bdf6706.svg,在不致引起混淆的时候可以简单写为E。对于单位矩阵,显然有等式:94d33a58-d63c-eb11-8da9-e4434bdf6706.svg98d33a58-d63c-eb11-8da9-e4434bdf6706.svg

数量乘法

矩阵与数量的乘法的定义类似于多元组与数量的乘法,矩阵

9ad33a58-d63c-eb11-8da9-e4434bdf6706.svg

称为矩阵A与数量k的数量乘法,记为kA,换句话说,用数k乘矩阵就是把矩阵的每个元素都乘上k,矩阵的数量乘法有如下性质:

  • 9bd33a58-d63c-eb11-8da9-e4434bdf6706.svg

  • 9dd33a58-d63c-eb11-8da9-e4434bdf6706.svg

  • a0d33a58-d63c-eb11-8da9-e4434bdf6706.svg

  • a1d33a58-d63c-eb11-8da9-e4434bdf6706.svg

  • a3d33a58-d63c-eb11-8da9-e4434bdf6706.svg

矩阵

a4d33a58-d63c-eb11-8da9-e4434bdf6706.svg

通常称为数量矩阵,如果A是一个n×n矩阵,那么有a6d33a58-d63c-eb11-8da9-e4434bdf6706.svg

转置

把一矩阵A的行列互换,所得到的矩阵称为A的转置,记为a7d33a58-d63c-eb11-8da9-e4434bdf6706.svg,或者A'。确切的定义是:

a9d33a58-d63c-eb11-8da9-e4434bdf6706.svg

显然,m×n矩阵的转置是n×m矩阵。

矩阵的转置有如下性质:

  • aad33a58-d63c-eb11-8da9-e4434bdf6706.svg

  • acd33a58-d63c-eb11-8da9-e4434bdf6706.svg

  • afd33a58-d63c-eb11-8da9-e4434bdf6706.svg

  • b0d33a58-d63c-eb11-8da9-e4434bdf6706.svg

矩阵的秩

如果把矩阵的每一行看成一个向量,那么矩阵就可以认为是由这些行向量组成的。同样,如果把矩阵的每一列看成一个向量,那么矩阵也可以认为是由列向量组成的。所谓的行秩就是指矩阵的行向量组的秩;矩阵的列秩就是矩阵的列向量组的秩。

例如,矩阵

b5d33a58-d63c-eb11-8da9-e4434bdf6706.svg

行向量组b8d33a58-d63c-eb11-8da9-e4434bdf6706.svg,很容易证明向量组bad33a58-d63c-eb11-8da9-e4434bdf6706.svg是向量组bcd33a58-d63c-eb11-8da9-e4434bdf6706.svg的一个极大线性无关组。事实上由bed33a58-d63c-eb11-8da9-e4434bdf6706.svg,可得bfd33a58-d63c-eb11-8da9-e4434bdf6706.svg,这就证明了bad33a58-d63c-eb11-8da9-e4434bdf6706.svg线性无关。因为c3d33a58-d63c-eb11-8da9-e4434bdf6706.svg是零向量,把c3d33a58-d63c-eb11-8da9-e4434bdf6706.svg添进去就线性相关了,因此向量组bcd33a58-d63c-eb11-8da9-e4434bdf6706.svg的秩是3,也就是说矩阵A的行秩为3。

列向量组c8d33a58-d63c-eb11-8da9-e4434bdf6706.svg,用同样的方法可以得到cad33a58-d63c-eb11-8da9-e4434bdf6706.svg是线性无关而cdd33a58-d63c-eb11-8da9-e4434bdf6706.svg,如果把cfd33a58-d63c-eb11-8da9-e4434bdf6706.svg添进去就线性相关了,因此,向量组cad33a58-d63c-eb11-8da9-e4434bdf6706.svg是向量组d1d33a58-d63c-eb11-8da9-e4434bdf6706.svg的一个极大线性无关组,秩是3。

可以证明矩阵的行秩和列秩是相等的,所以统称为矩阵的秩

行列式

方阵是矩阵中的特殊性况,指的是行数和列数都相等的矩阵。对于行数和列数相同的方阵才有行列式的概念,给定一个n×n的矩阵M:

d3d33a58-d63c-eb11-8da9-e4434bdf6706.svg

定义一个n级行列式

d5d33a58-d63c-eb11-8da9-e4434bdf6706.svg

称为矩阵M的行列式,记作d6d33a58-d63c-eb11-8da9-e4434bdf6706.svg

现在考虑行列式的计算,对于n级行列式:

d7d33a58-d63c-eb11-8da9-e4434bdf6706.svg

中,划去元素d9d33a58-d63c-eb11-8da9-e4434bdf6706.svg所在的第i行和第j列,剩下的dbd33a58-d63c-eb11-8da9-e4434bdf6706.svg个元素按原来的排法构成一个n-1级的行列式:

dcd33a58-d63c-eb11-8da9-e4434bdf6706.svg

称为元素ddd33a58-d63c-eb11-8da9-e4434bdf6706.svg的余子式,记为ded33a58-d63c-eb11-8da9-e4434bdf6706.svg,称dfd33a58-d63c-eb11-8da9-e4434bdf6706.svg代数余子式,则对于n级行列式,如下等式成立:

e0d33a58-d63c-eb11-8da9-e4434bdf6706.svg

按这个定义,3级行列式可以改写成:

e2d33a58-d63c-eb11-8da9-e4434bdf6706.svg

举个计算行列式的例子,

e3d33a58-d63c-eb11-8da9-e4434bdf6706.svg

e5d33a58-d63c-eb11-8da9-e4434bdf6706.svg

行列式具有一些特别重要的性质:

  • 行列互换,行列式不变,即e6d33a58-d63c-eb11-8da9-e4434bdf6706.svg

  • 一行(列)的公因子可以提出去,或者说一数乘行列式的一行(列)就相当于这个数乘以此行列式,如果一行列式中一行(列)为零,那么行列式为零,即

e9d33a58-d63c-eb11-8da9-e4434bdf6706.svg

eed33a58-d63c-eb11-8da9-e4434bdf6706.svg

  • 如果某一行(列)是两组数的和,那么这个行列式就等于两个行列式的和,而这两个行列式除这一行(列)以外全与原来行列式的对应行(列)一样,即:

f1d33a58-d63c-eb11-8da9-e4434bdf6706.svg

f2d33a58-d63c-eb11-8da9-e4434bdf6706.svg

  • 如果行列式中有两行(列)相同,那么行列式为零,所谓两行(列)相同就是说两行(列)的对应元素都相等。

  • 如果行列式中两行(列)成比例,那么行列式为零。

  • 把一行(列)的倍数加到另一行(列),行列式不变。

  • 对换行列式中两行(列)的位置,行列式反号。

这些性质可以帮助我们计算行列式的值,例如计算行列式

f4d33a58-d63c-eb11-8da9-e4434bdf6706.svg

行列式的计算过程为

f5d33a58-d63c-eb11-8da9-e4434bdf6706.svg

第一步是互换第1,2两行,然后都是把一行的倍数加到另一行,不难算出,用这个方法计算一个n级的数字行列式只需要做f6d33a58-d63c-eb11-8da9-e4434bdf6706.svg次乘法和除法。

逆矩阵

n级方阵A称为可逆的,如果有n级方阵B,使得AB=BA=E,这里E是单位矩阵,那么B就称为逆矩阵,记为f7d33a58-d63c-eb11-8da9-e4434bdf6706.svg

首先,由于矩阵的乘法规则,只有方阵才能满足要求;其次,对于任意的矩阵A,矩阵B是唯一的。

f8d33a58-d63c-eb11-8da9-e4434bdf6706.svg是矩阵

fad33a58-d63c-eb11-8da9-e4434bdf6706.svg

中元素ddd33a58-d63c-eb11-8da9-e4434bdf6706.svg代数余子式,矩阵

02d43a58-d63c-eb11-8da9-e4434bdf6706.svg

称为A的伴随矩阵。易知,04d43a58-d63c-eb11-8da9-e4434bdf6706.svg

如果07d43a58-d63c-eb11-8da9-e4434bdf6706.svg,则0ad43a58-d63c-eb11-8da9-e4434bdf6706.svg,即0fd43a58-d63c-eb11-8da9-e4434bdf6706.svg

如果矩阵A,B可逆,那么a7d33a58-d63c-eb11-8da9-e4434bdf6706.svg和AB也是可逆,且17d43a58-d63c-eb11-8da9-e4434bdf6706.svg1dd43a58-d63c-eb11-8da9-e4434bdf6706.svg

方阵的逆矩阵并不是总存在的,有几种方法可以判定逆矩阵何时存在:

  • 矩阵的秩为n;

  • 它是非奇异的;

  • 07d43a58-d63c-eb11-8da9-e4434bdf6706.svg

  • 它的行(列)是线性无关的;

如果矩阵M是一个方阵并且其行列式的值为非零,则称矩阵M为非奇异的,否则,就称为奇异的。

参考

[1] 高等代数. 高等敎育出版社, 2003.

[2] Tomas Akenine-Möller, Eric Haines, and Naty Hoffman. Real-time rendering. CRC Press, 2011.

[3] F. Hill, and S. Kelley. Computer Graphics Using OpenGL, 3/E, Pearson, 2007.

文章来源:https://zhuanlan.zhihu.com/p/144717539?utm_source=wechat_session&utm_medium=social&utm_oi=1230767719319826432&utm_campaign=shareopn

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值