《矩阵论》学习笔记(六):第六章 广义逆矩阵

《矩阵论》学习笔记(六):第六章 广义逆矩阵

  • 提出的原因
    之前学到的”可逆矩阵“是针对方阵而言的,只有方阵才有可逆不可逆之说。
    但对实际中的一般矩阵而言,存在如下问题:
    1)大部分矩阵不一定是方阵;
    2)即使是方阵,也不一定可逆。
    所以提出广义逆矩阵的概念,是对不可逆矩阵和长方矩阵的推广。

一、广义逆矩阵的概念与性质

1.1. 广义逆矩阵的定义

  • 广义逆矩阵的概念

对矩阵 A ∈ C m ∗ n A∈C^{m*n} ACmn,有矩阵 X ∈ C n ∗ m X∈C^{n*m} XCnm可以满足如下方程:

1) A X A = A AXA=A AXA=A
2) X A X = X XAX=X XAX=X
3) ( A X ) H = A X (AX)^H=AX (AX)H=AX
4) ( X A ) H = X A (XA)^H=XA (XA)H=XA

只要满足4个方程中的某一个/几个,称X为矩阵A的广义逆矩阵。
若X满足全部的4个方程,称X为矩阵A的Moore-Penrose逆,记为 A + A^+ A+

  • 广义逆矩阵的存在性与唯一性
广义逆矩阵Moore-Penrose逆
满足4个方程中的某一个/几个全部的4个方程成立
存在性一定存在一定存在
唯一性A{i}不唯一 A + A^+ A+唯一
  • 广义逆矩阵的种类
种类满足条件个数唯一性
A{i}只满足第i个方程的X记做 A ( i ) A^{(i)} A(i),所有 A ( i ) A^{(i)} A(i)构成集合A{i}4种不唯一
A{i,j}满足第i,j个方程的X记做 A ( i , j ) A^{(i,j)} A(i,j),所有 A ( i , j ) A^{(i,j)} A(i,j)构成集合A{i,j}6种不唯一
A{i,j,k}满足第i,j,k个方程的X记做 A ( i , j , k ) A^{(i,j,k)} A(i,j,k),所有 A ( i , j , k ) A^{(i,j,k)} A(i,j,k)构成集合A{i,j,k}4种不唯一
A + A^+ A+满足全部Penrose方程的X1种唯一

常用的五类:A{1}、A{1,2}、A{1,2,3}、 A + A^+ A+

1.2. 广义逆矩阵的性质及构造方法

1.2.1. A{1}-逆的性质及构造方法
  • A{1}-逆的唯一性:

对任意矩阵 A ∈ C m ∗ n A∈C^{m*n} ACmn,A的{1}-逆 A ( 1 ) A^{(1)} A(1)一般不是唯一的。
但若A的{1}-逆 A ( 1 ) A^{(1)} A(1)是唯一的 ⇔ \Leftrightarrow A是可逆矩阵, A ( 1 ) A^{(1)} A(1)= A − 1 A^{-1} A1

  • A{1}-逆的性质:
    对任意矩阵 A ∈ C m ∗ n , B ∈ C n ∗ m , λ ∈ C A∈C^{m*n},B∈C^{n*m},\lambda∈C ACmnBCnmλC,有:
-A{1}的性质
1. ( A ) (A) (A)
  • 构造其他广义逆矩阵:
-由A{1}-逆构造其他广义逆矩阵
{1,2}-逆
{1,2,3}-逆
{1,2,4}-逆
A + ^+ +
1.2.2. A + ^+ +的性质
  • A + ^+ +的性质:
-A + ^+ +的性质
1. ( A ) (A) (A)

二、广义逆矩阵与线性方程组的求解

  • 线性方程组解的种类
线性方程组解的种类
有解/相容
无解/不相容
1- 通解 '解不唯一'
2- 极小范数解 '解唯一'
3- 最小二乘解 '解不唯一'
4- 极小范数最小二乘解 '解不唯一'

在这里插入图片描述

  • 相容:
解线性方程唯一性
通解 A x ⃗ = b ⃗ A \vec x=\vec b Ax =b x ⃗ 0 = A ( 1 ) b ⃗ \vec x_0=A^{(1)}\vec b x 0=A(1)b
与A{1}-逆有关
不唯一
极小范数解 m i n A x ⃗ = b ⃗ [ x ⃗ ] min_{A \vec x=\vec b}[\vec x] minAx =b [x ] x ⃗ 0 = A ( 1 , 4 ) b ⃗ \vec x_0=A^{(1,4)}\vec b x 0=A(1,4)b
与A{1,4}-逆有关
唯一
  • 不相容:
解矛盾方程唯一性
最小二乘解 m i n x [ [ A x ⃗ − b ⃗ ] ] min_{x}[[A \vec x-\vec b]] minx[[Ax b ]] x ⃗ 0 = A ( 1 ) b ⃗ \vec x_0=A^{(1)}\vec b x 0=A(1)b
与A{1,3}-逆有关
不唯一
极小范数最小二乘解 m i n A x ⃗ − b ⃗ [ x ⃗ ] min_{A \vec x-\vec b}[\vec x] minAx b [x ] x ⃗ 0 = A ( 1 , 4 ) b ⃗ \vec x_0=A^{(1,4)}\vec b x 0=A(1,4)b
与A + ^+ +有关
唯一

求解A + ^+ +/A ( 1 ) ^{(1)} (1)

- A + ^+ +的求解步骤
1、 A = F G A=FG A=FG(由满秩分解->hermite矩阵求得F和G)
2、 A + = G + F + , A + = G H ( F H A G H ) ( − 1 ) F H A^+=G^+F^+,A^+=G^H(F^HAG^H)^{(-1)}F^H A+=G+F+,A+=GH(FHAGH)(1)FH
  • 求解方程组
- x 0 _0 0的求解步骤
1、求解A + ^+ +
2、 x 0 = A + b x0=A^+b x0=A+b
  • 方程组是否相容/有无解
- 判断是否相容/有无解
1、求解A + ^+ +
2、 x 0 = A + b x0=A^+b x0=A+b
3、带入方程Ax=b中,判断等号是否成立。
- 成立:相容/有解,x0是极小范数解。
- 不成立:不相容/无解,x0是极小范数最小二乘解。
  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值