不是方阵有逆矩阵吗_第二十四课:自反广义逆矩阵

bcb8d39f2977d1ddc8553372c80958e8.png

在学线性代数的时候,我们知道,对于满秩方阵而言,

,可以说矩阵A是具有自反性的,但是对于广义逆矩阵而言,这个一般不成立。也就是说矩阵A的广义逆矩阵的广义逆矩阵,不一定是矩阵A。

广义逆矩阵中具有自反性的矩阵可以称得上是一类特殊的广义逆矩阵了,今天我们就来介绍具有自反性的广义逆矩阵。

26a129b6d6d75ea3e3649ef8c2c32989.png

这里自反广义逆记作

,关于自反广义逆有如下的关系:

47a969bfd4eb2a7c217098b56acb19a6.png

可以看出,自反广义逆矩阵比单边逆矩阵更具有一般性。(单边逆矩阵有时候不一定存在)

5c75291fc1b82f45d1e296bc7686b43e.png

6484617cc27c77d8f7365935cbe1b06a.png

bbd9bcd6631f080b14d5578b86759f84.png

需要注意的是,虽然0矩阵的自反广义逆矩阵是0矩阵,但是自反广义逆矩阵并不唯一。事实上,对于A

05b4e2966d00b59c1c79eff5d13d105b.png

而言,我们构造这样的矩阵G

2a27fe4a7ee77c5c6a1ff83b1abf51da.png

这样的矩阵G,就是A的自反广义逆。在这个构造中我们也可以看出,这样的矩阵G并不唯一。

于是,我们可以定义自反广义逆的集合

b90c969089e93368f378a849bf34cfa6.png

对于同一个矩阵的自反广义逆之间的关系,我们有如下定理:

b21a38bc6d9831028a98baeb393c7d60.png
这个考试不要求,也不要求证明

下面介绍定理3:

cb94886abc51fa3749f5599dacb80cd9.png

这个定理我们可以类比的进行记忆,在第二十三棵:广义逆矩阵部分我们有推论1。此处,对于自反广义逆而言是取等的关系。

证明如下:

7201cf76c1fecd8c57e60b8958f44901.png

证明过程也可以结合上一课的推论1,一起体会。

39b1e957b790da440092118ad1a6fc6d.png

由定理2可知,

是A的一个自反广义逆矩阵。

定理2给出了自反广义逆矩阵的一种具体的构造方法,定理3则给出了在广义逆矩阵中,区分自反广义逆的一种有效方法。

那就是当广义逆矩阵的秩等于矩阵A的秩的时候是自反广义逆。当广义逆的秩大于矩阵A的秩的时候是广义逆矩阵而不是自反广义逆矩阵。

注1:在上一课的广义逆矩阵中已经有过解释

注2:

d4cf7830abc180985e10ed6fa23f3101.png
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值