递归神经网络_【AAAI2020】基于半监督递归图神经网络的停车可用性预测

25a80ab373723fc3710da22ce1f6b8c1.png

这篇文章将GCN卷积使用到了极致的地步,这里的GCN指的是GAT。空间域使用的是GRU,与传统方法区别不大,空间域通过考虑多个范围的空间网络与潜在联系网络,使用多个GCN进行特征提取,最后将多个GCN提取的特征融合后输入至GRU中。

Semi-Supervised Hierarchical Recurrent Graph Neural Network for City-Wide Parking Availability Prediction。

4560650f69fed217259270a899d9b006.png

1 摘要

对全市停车位可用性的有效预测可以提高停车效率,帮助城市规划,最终缓解城市拥堵。该篇论文针对城市范围内的停车位可用性预测,提出了一种半监督递归图神经网络(SHARE)。但对全市范围内的停车位可用性预测并不是一件简单的任务,主要存在着三个挑战:

  • 非欧几里得的停车场空间自相关性
  • 停车场之间及停车场内部的动态时间相关性
  • 实时停车数据信息缺乏

挑战一:比较易理解,停车场的可用性会受附近的停车场占用情况的影响,而且很有可能和远距离的停车场同步,比如对于开展一场大型音乐会,一般音乐会附近的停车场的可用性会随着距离而扩大;又如对于住宅区和商业办公区,上下班期间的停车可用性一般会呈相对应的变化。

解决方案:针对此,论文提出一个层次图卷积模块来捕获停车场之间的非欧几里得空间相关性,由上下文图卷积块和软聚类图卷积块,分别用于局部和全局空间依赖建模。


挑战二:停车场未来的可用性与之前的可用性相关,此外,停车场之间的空间自相关性也会随着时间的变化而变化。

解决方案:论文利用GRU模块来捕获时间依赖性。


挑战三:实时停车信息的缺失,并不是所有停车场都配备有监控传感设备,很大一部分的停车场的实时停车可用性无法获得。

解决方案:提出一种停车可用性近似模块,对缺失实时停车信息的停车场进行实时停车可用性近似估计。通过引入的传播卷积块及重用GRU模块,分别从空间和时间两个方面对缺失的停车可用性进行近似,最终通过基于熵的机制进行融合。


2 文章亮点

  1. 通过层次图卷积来分别捕获局部空间依赖性和全局依赖性
  2. 相较于之前的停车预测工作,考虑结合实时停车可用性来预测全市范围停车可用性,提出的近似估计模型,分别时间和空间上对缺失的停车可用性信息进行估计。

3 详细内容

3.1 模型定义

停车场:

89194fb1bcf62bcf3f49fc3af88da216.png

表示具有实时停车信息的停车场,
表示没有实时停车能力的停车场

上下文特征向量:

654a01d27ce12e37da76dddea90efebd.png

:表示停车能力

Given:

  • 时间窗口:T
  • 所有停车场的上下文特征:

2bfcb6cf8e5df9505c3231628a7af1ff.png
  • 部分实时停车能力:

fd35b1a848ed0f65233c850d574deb1a.png

Target:

预测所有停车场

在下个τ时间的停车可用性,即:

192e6275b5c1256b26c886234f02dffb.png

3.2 空间依赖

3.2.1 上下文图卷积(Contextual graph convolution)

将停车场以图结构G=(V;E;A)进行建模,停车场之间的连接性

∈E

1aec1be2d68c3f4d96cb336b2eb23aa3.png

然后通过Attention机制,来计算不同停车场之间的权重系数

49fc8edbda7a17392feed6e5c3781d18.png

是一个可学习的共享权重矩阵,对于停车场
,两者的近似得分定义为:

c07b7da82c71e4c1a5ded8ee8af44fd6.png

在使用Attention机制去计算所有停车场两两之间的近似得分的复杂度属于平方级别,所以在此,为将更多注意力放到周边的停车场以及更快的收敛,这里只计算停车点的邻接节点:

e29969e7552ea1113d91722cf92b285d.png

3.2.2 软聚类图卷积(Soft clustering graph convolution)

除了局部相关性外,远距离的停车场之间也可能存在相关性。这里采用软聚类图卷积去捕获全局依赖性

7a680ce5506c2bf03faa51895c1333e9.png

这里的软聚类图卷积首先定义了一组潜在节点,然后基于上一步上下文图卷积学习到的每一个停车场的表征去学习潜在节点的表示。这样学到的潜在节点就包含有上下文环境特征。

如上左图所示,共享的潜在节点可以看作预测任务的正则化,一个停车场可以归属到多个潜在节点,最终,我们学习到一个软分配矩阵,如上右图所示。

74444bbb927b85d7cff7952d8dd6b256.png

对每个停车点的所属潜在节点进行softmax函数处理,以确保每个停车场所属各个潜在节点的概率和为1。

一旦S获得,每个潜在节点可以表示为:

99c1886d1c7012ed7d9c70398c1b426c.png

当得到每个潜在节点的表征后,就可以和上下文图卷积模块类似,通过卷积操作,得到每个潜在节点之间的依赖关系。

53cc336b3c6ef6b7094b2d6e935a7e37.png

相比于上下文图卷积时的注意力机制,这里的注意力系数的计算只考虑节点之间的是否连接。最后通过对生成潜在节点表示的逆处理,我们得到软聚类图卷积后的每个停车点的表示。

58473959507319135064f385788b34f9.png

3.3 时间依赖

时间依赖性的捕获通过GRU模块,属于循环神经网络RNN中一种变体,比较经典,这里就不在过多赘述。

3.4 近似估计模型

最后是停车可用性近似模块,对于那些缺失实时停车可用性的停车场,依托于具有实时停车可用性信息的停车场,分别从时间和空间上对于停车能力进行估计,注意这里并不是直接得到具体的停车能力,而是学习到一种停车可用性分布估计,最后并通过基于熵的机制,将时间分布估计和空间分布估计进行融合,得到最终的停车可用性分布估计。

3.4.1 空间近似

传播卷积块用于计算空间上的停车可用性,类似于上下文图卷积,不过对于节点间的连接性做了更宽松的处理,

068e4db0939ed940b18b3c0dfceb5122.png

其中

表示两个停车场之间路网距离第k个近邻点。以此来扩展邻接矩阵的连接性。

3.4.2 时间近似

时间上停车能力的近似这里直接复用了GRU模块,用上一个时间段的隐藏状态

,

3eff85e15644529e72a830be0c9cbf96.png

3.4.3 熵机制融合

01b20ed4a261cc54076714ccda25a063.png

通过熵机制融合得到的PA近似分布,用于两个任务,一是串联到之前学习到的上下文图卷积的表征中然后输入到软聚类如卷积块中用于学习潜在的节点表示;二是与上下文图卷积和软聚类图卷积的输出结合,作为每个停车场在时间步t的总体表示,并将其输入到GRU模块中,生成最终的PA预测结果。

4 实验

4.1 数据集描述

7104fcc0f468596a17ed1163702e253f.png

实验的数据集来自北京和深圳两个城市的真实停车场数据。

4.2 对比实验

70adf8a1af84cfefc375e0d122a72df6.png

本文提出的模型与选取的7个baseline做了实验对比,都取得了优于baseline的效果,验证了模型的有效性。

5 总结

这篇论文面对城市范围内的停车位可用性预测,考虑到结合实时停车位可用信息与丰富的上下文环境信息融入到图神经网络进行停车预测,并针对不具备实时停车信息的停车场提出了近似估计模型,很好的解决了实时停车位可用性信息缺失的问题。

更多相关专业文章,欢迎关注公众号【图与交通】!

可以添加微信(微信号: professor_huangdehua ),拉你进专业交流群。

参考资料

@article{zhang2019semi, title={Semi-Supervised Hierarchical Recurrent Graph Neural Network for City-Wide Parking Availability Prediction}, author={Zhang, Weijia and Liu, Hao and Liu, Yanchi and Zhou, Jingbo and Xiong, Hui}, booktitle={Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence}, year={2020} }

需要详细了解的请看原论文和的代码(https://github.com/Vvrep/SHARE-parking_availability_prediction-Pytorch)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值